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In convection-diffusion problems, transport processes dominate while diffu-
sion effects are confined to a relatively small part of the domain. This state
of affairs means that one cannot rely on the formal ellipticity of the differ-
ential operator to ensure the convergence of standard numerical algorithms.
Thus new ideas and approaches are required.

The survey begins by examining the asymptotic nature of solutions to sta-
tionary convection-diffusion problems. This provides a suitable framework
for the understanding of these solutions and the difficulties that numer-
ical techniques will face. Various numerical methods expressly designed for
convection-diffusion problems are then presented and extensively discussed.
These include finite difference and finite element methods and the use of
special meshes.
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1. Introduction

1.1. What are convection-diffusion problems?

Our interest is in elliptic operators whose second-order derivatives are mul-
tiplied by some parameter ε that is allowed to be close to zero. These deriv-
atives model diffusion while first-order derivatives (which are assumed to be
present) are associated with convective or transport processes. In classical
problems where ε is not close to zero, diffusion is the dominant mechanism in
the model and the first-order convective derivatives play a relatively minor
rôle in the analysis. On the other hand, when ε is near zero and the elliptic
differential operator has convective terms, it is called a convection-diffusion
operator. Such operators, while still satisfying the definition of ellipticity,
live dangerously by flirting with the non-elliptic world. Their convective
terms have a significant influence on the theoretical and numerical solution
of the problem and cannot be summarily dismissed as ‘lower-order terms’.

We shall see that the solutions of convection-diffusion problems have a
convective nature on most of the domain of the problem, and the diffusive
part of the differential operator is influential only in certain narrow sub-
domains. In these subdomains the gradient of the solution is large: its
magnitude is proportional to some negative power of the parameter ε. We
describe such behaviour by saying that the solution has a layer .

The fact that the elliptic nature of the differential operator is disguised
on most of the domain means that numerical methods designed for elliptic
problems will not work satisfactorily. In practice they usually exhibit a
certain degree of instability. The challenge then is to modify these methods
into a stable form without compromising their accuracy.

A second-order differential operator in n variables whose highest-order
derivatives are

−
n

∑

i,j=1

aij
∂2(·)

∂xi∂xj
,

where the aij are constants, is said to be elliptic if

n
∑

i,j=1

aijξiξj ≥ σ
n

∑

i=1

ξ2
i for all ξi and ξj , (1.1)

where σ > 0 is called the ellipticity constant. The differential operators
in convection-diffusion problems stretch this definition as far as they dare:
their ellipticity constant is close to zero.

It is often assumed (certainly in introductory textbooks in both theoret-
ical differential equations and numerical analysis) that σ is not close to zero;
for example the Laplacian has σ = 1. This assumption avoids many diffi-
culties. Consider, say, the proof of convergence of a finite difference method
for the problem −σu′′(x) + u′(x) = f(x) on (0, 1) with u(0) = u(1) = 0: if
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you allow the positive constant σ to take a value near zero, does the argu-
ment still work? In fact, on a more fundamental level, what happens to the
solution u of this boundary value problem when σ becomes small? Taking
into account this alteration in the behaviour of u, how can we modify the
numerical method so that it remains stable and accurate? It is questions
such as these that will preoccupy us for the duration of this survey.

Our task now is to make concrete these suspicions and assertions. We shall
begin in Section 2 by recalling some ideas about maximum principles and
asymptotic expansions. In Section 3 we use these tools to begin an examina-
tion of the asymptotic nature of solutions to convection-diffusion problems.
Furthermore, to carry out any numerical analysis we need a priori to have
some bounds on the derivatives of the solutions of these problems; such
estimates, and useful decompositions of the solutions, are also given in this
section. Finite difference methods and the accuracy of their solutions are
examined in Section 4. This leads naturally to the question of constructing
suitable meshes for convection-diffusion problems, and Section 5 is devoted
to an epitome of this class: Shishkin meshes. We present in this section a
full analysis of a finite difference method on a Shishkin mesh.

The discussion up to this point has dealt only with ordinary differential
equations, where the theory is fairly complete. Now we move into deeper
waters: in Section 6 we discuss the nature of solutions to convection-diffusion
problems posed in two-dimensional domains. A priori estimates for such
problems are presented in Section 7, then some preliminary comments on
numerical methods are given in Section 8. Finite difference methods for
such problems are considered in Section 9, but our main emphasis is on
Section 10 which is devoted to finite element methods.

This survey cannot, for reasons of length, give a complete account of
the many numerical methods used to solve steady-state convection-diffusion
problems. Roos, Stynes and Tobiska (1996) give a comprehensive discussion
of numerical methods in this area and a new edition of this book is at present
in preparation.

1.2. A little motivation and history

Perhaps the most common source of convection-diffusion problems is as lin-
earizations of Navier–Stokes equations with large Reynolds number. Morton
(1996) points out that this is by no means the only place where they arise:
in his opening chapter he lists ten examples involving convection-diffusion
equations that include the drift-diffusion equations of semiconductor device
modelling and the Black–Scholes equation from financial modelling. He
also observes that ‘Accurate modelling of the interaction between convect-
ive and diffusive processes is the most ubiquitous and challenging task in
the numerical approximation of partial differential equations.’
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The numerical solution of convection-diffusion problems goes back to the
1950s (Allen and Southwell 1955), but only in the 1970s did it acquire a
research momentum that has continued to this day. A potted history of
the development of numerical methods for convection-diffusion problems is
presented in Stynes (2003). The field is still very active and, as we shall see
in our later sections, much remains to be done.

1.3. Notation

Throughout this article, ε is a small positive parameter and C will denote a
generic constant that is independent of ε and of any mesh used – it can take
different values in different places (even sometimes in the same calculation).
A subscripted C (e.g., C1) is also a constant that is independent of ε and
of any mesh used, but takes one fixed value.

2. Analytical tools

Consider the second-order differential operator L in n variables defined on
some bounded domain (open connected set) D by

Lu(x) = −
n

∑

i,j=1

aij
∂2u(x)

∂xi∂xj
+

n
∑

i=1

bi(x)
∂u(x)

∂xi
+ h(x)u(x),

where the aij are constants. We assume that L is elliptic in the sense of
(1.1). Denote the closure of D by D̄ and its boundary by ∂D, and let
Ck(S) denote the space of functions that are defined on a set S and k-times
differentiable on S.

Lemma 2.1. (maximum principle) Let u ∈ C0(D̄)∩C2(D) satisfy the
differential inequality Lu ≥ 0 on D. Suppose that the functions bi and h
are bounded on D, and h ≥ 0 on D. Suppose also that u ≥ 0 on ∂D. Then
u ≥ 0 on D̄.

This familiar result is proved in Protter and Weinberger (1984). It is the
key to analysing the behaviour of solutions to convection-diffusion problems
and proving the convergence to these solutions of the outputs of various
numerical methods.

A maximum principle can be used to bound a function in absolute value.

Corollary 2.2. (barrier function) Suppose that the functions bi and h
are bounded on D, and h(x) ≥ 0 on D. Let u, v ∈ C0(D̄)∩C2(D). Suppose
that |Lu(x)| ≤ Lv(x) for all x ∈ D and |u(x)| ≤ v(x) for all x ∈ ∂D. Then
|u(x)| ≤ v(x) for all x ∈ D̄.

Proof. One cannot immediately apply Lemma 2.1 to the functions |u| and
v because |u| may not be differentiable. Instead apply this lemma to the
functions u − v and u + v and deduce the desired result.
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A function such as v in Corollary 2.2 is called a barrier function for
u. This corollary is often applied to a function u that is a solution of a
boundary value problem – so u|∂D and Lu are known, but u|D is unknown.
We then try to choose a suitable function v that satisfies the hypotheses
of the corollary in order to deduce some worthwhile information about the
behaviour of u inside D.

Putting barrier functions aside for the moment, we turn our attention to
a useful descriptive tool: asymptotic expansions.

Let ε > 0 be a small parameter. If f = f(x, ε) and g = g(x, ε) with x
lying in some domain D, we write f(x, ε) = O(g(x, ε)) as ε → 0 if there
exist a positive number A that is independent of ε and an ε0 > 0 such that
|f(x, ε)| ≤ A|g(x, ε)| for 0 < ε ≤ ε0. If in addition A and ε0 are independent
of x, we say that f(x, ε) = O(g(x, ε)) as ε → 0 uniformly for x ∈ D.

This notation is useful for comparing functions of similar size. For func-
tions of greatly differing relative size, we use a ‘small o’ notation: we write
f(x, ε) = o(g(x, ε)) as ε → 0 if, given any δ > 0, there exists an ε0 > 0 such
that |f(x, ε)| ≤ δ|g(x, ε)| for 0 < ε ≤ ε0. If in addition ε0 is independent of
x, we say that f(x, ε) = o(g(x, ε)) as ε → 0 uniformly for x ∈ D.

An asymptotic sequence {φn(ε)}, n = 1, 2, . . . , is a sequence of functions
of ε such that

φn+1(ε) = o(φn(ε)) as ε → 0 for each n.

Asymptotic sequences are the building blocks from which one constructs
asymptotic expansions.

Let u(x, ε) be defined for all x ∈ D and all sufficiently small ε. Let

{φn(ε)} be an asymptotic sequence. The series
∑N

n=1 un(x)φn(ε), where N
may be finite or infinite, is said to be the asymptotic expansion of u with
respect to {φn} as ε → 0, if for each M ∈ {1, . . . , N} we have

u(x, ε) −
M
∑

n=1

un(x)φn(ε) = o(φM ) as ε → 0. (2.1)

In this case we write u(x, ε) ∼ ∑N
n=1 un(x)φn(ε). This asymptotic expansion

is uniform in D if (2.1) holds true uniformly for x ∈ D.
To introduce our final asymptotic concept, we take a simple example

involving functions of ε that have no additional dependence on a variable x.

Example 2.3. One can easily show that one solution uε of the algebraic
equation u2

ε + εuε − 1 = 0, where ε is a small positive parameter, satisfies

uε = 1+O(ε). Thus, as ε → 0, this solution approaches the solution u
(1)
0 = 1

of the problem u2
0 − 1 = 0. Similarly, the other solution of u2

ε + εuε − 1 = 0

approaches the other solution u
(2)
0 = −1 of u2

0 − 1 = 0. Thus, as ε → 0,
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the solutions of the original problem approach the solutions of the modified
problem with ε set equal to zero.

The situation is different for the solutions v
(1)
ε and v

(2)
ε of the equation

εv2
ε + vε − 1 = 0. An application of the quadratic formula and binomial

theorem shows that

v(1)
ε = 1 − ε + 2ε2 − 5ε3 + · · · , v(2)

ε = −ε−1 − 1 + ε − 2ε2 + · · · .

Hence, as ε → 0, one has v
(1)
ε → 1 (the solution of the modified problem

v0 − 1 = 0 obtained by setting ε = 0) but v
(2)
ε → −∞.

The first part of this example is a regular perturbation problem: the
behaviour of the solution when the perturbation parameter ε reaches its
limit value of 0 is quite similar to the behaviour when ε is near but not equal
to 0. The second part is a singular perturbation problem, where reaching the
limit value of the parameter causes some significant change in the solution

(here v
(2)
ε is not close to v0 = 1). As we shall see, convection-diffusion

problems form a class of singular perturbation problems.

3. Convection-diffusion problems in one dimension

In this section we shall examine the asymptotic nature of solutions to
convection-diffusion problems in one dimension, which will provide useful
insights. The behaviour of the derivatives of these solutions, which is crit-
ical for the numerical analysis that follows later, is also discussed. Finally
these two lines of attack are combined in the final subsection on Shishkin
decompositions of solutions.

3.1. Asymptotic analysis

To avoid excessive detail, we do not begin with the most general situation
but work instead with the two-point boundary-value problem

Lu(x) : = −εu′′(x) + u′(x) = f(x) for 0 < x < 1, (3.1a)

u(0) = u(1) = 0, (3.1b)

where we recall from Section 1.3 that ε is a small positive parameter. As-
sume that f ∈ C∞[0, 1]. This is a convection-diffusion problem: the coef-
ficient of the first-order derivative is much larger in magnitude than the
coefficient of the second-order derivative.

It would be more precise to write u(x, ε) for the solution of (3.1), but for
convenience we use u(x).

If we set ε = 0 then (3.1a) becomes a first-order differential equation
– a significant change – so we expect that this problem is singularly per-
turbed. A more careful definition of singularly perturbed (with respect to
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Figure 3.1. Graph of (3.3) with ε = 0.01.

the maximum norm) is that there exists x̂ ∈ [0, 1] (in fact x̂ = 1 for this
problem) such that

lim
ε→0

lim
x→x̂

u(x) �= lim
x→x̂

lim
ε→0

u(x). (3.2)

Example 3.1. To get some immediate insight into (3.1), consider the
simple case where f(x) ≡ 1. Then

u(x) = x − e−(1−x)/ε − e−1/ε

1 − e−1/ε
for 0 ≤ x ≤ 1. (3.3)

See Figure 3.1.
One can check that (3.2) holds true with x̂ = 1. We say that u(x) has

a boundary layer at x = 1: this is a narrow region where u is bounded
independently of ε but its derivatives blow up as ε → 0 (differentiate (3.3)
to see that u′(1) ≈ −1/ε, u′′(1) ≈ −1/ε2, etc.). All the important features
of the general problem (3.1) are also present in (3.3).

For the differential operator L of (3.1), only with certain exceptional
combinations of the boundary conditions and f does the problem fail to be
singularly perturbed. For example, if f(x) ≡ 1 and the boundary conditions
were changed to u(0) = 0, u(1) = 1, then the solution of (3.1) becomes the
well-behaved function u(x) = x and (3.2) is no longer satisfied for any
x̂ ∈ [0, 1], i.e., (3.1) is now a regular perturbation problem.

The standard way of generating an asymptotic expansion for the solution
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u(x) of a boundary-value problem such as (3.1) is to assume that

u(x) =
∞

∑

n=0

un(x)εn. (3.4)

Substituting this into (3.1a) yields

−ε
∞

∑

n=0

u′′
n(x)εn +

∞
∑

n=0

u′
n(x)εn = f(x).

Comparing coefficients of powers of ε, we get

u′
0(x) = f(x), u′

1(x) = u′′
0(x), u′

2(x) = u′′
1(x), etc.

Each of these is a first-order ordinary differential equation and should have
associated with it a single boundary condition. But the boundary conditions
(3.1b) seem to imply that un(0) = un(1) = 0 for all n: twice as many
conditions as we can handle! It turns out that if we require for all n that
un(0) = 0 and place no condition on un(1), then we shall be able to build an
asymptotic expansion – but no other way of using the boundary conditions
(e.g., un(1) = 0 for all n) works. Recalling (3.3), which is qualitatively
similar to the solution of (3.1), in forming the asymptotic expansion (3.4)
one must discard boundary conditions where a layer occurs.

We can now solve for the un(x):

u0(x) =

∫ x

0
f(t) dt, u1(x) = f(x) − f(0), u2(x) = f ′(x) − f ′(0), etc.

Thus (3.4) becomes
∞

∑

n=0

(

F (n)(x) − F (n)(0)
)

εn, (3.5)

where F (x) :=
∫ x
0 f(t) dt. One can show that

u(x) =
M
∑

n=0

(

F (n)(x) − F (n)(0)
)

εn + o(εM )

for each M ≥ 0, but this expansion is not uniform for 0 ≤ x ≤ 1; it is
uniform only for 0 ≤ x ≤ δ where δ is any fixed constant in (0, 1). This
situation is unsatisfactory since at x = 1 we expect that u(x) has a boundary
layer, which is its most interesting feature. Of course the inadequacy of the
expansion near x = 1 is unsurprising because its construction has ignored
the boundary condition u(1) = 0 from (3.1b).

What can be done to improve the asymptotic expansion? Consider the
special case f(x) ≡ 1. Then (3.5) collapses to the function x, but the exact
solution is given by (3.3). In this formula the terms e−1/ε are ‘exponentially
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small’ (i.e., negligible compared with any integer power of ε) and can safely
be ignored. What is missing from (3.5) is some approximation of e−(1−x)/ε,
that is, some function of the variable (1 − x)/ε must be added to (3.5).

A standard systematic way of introducing such a function is as follows:
define the stretched variable ρ := (1−x)/ε and rewrite the differential equa-
tion as a function of ρ instead of a function of x. (Note: in the formula for
ρ, the number 1 appears as the location of the layer, but the division by
ε is more subtle – the purpose of the change of variable is to achieve the
same dependence on ε in all the relevant terms of the transformed differen-
tial operator, but the exact scaling to use in general singular perturbation
problems is not always obvious.)

Thus set ũ(ρ) ≡ u(x) for 0 < ρ < 1/ε (corresponding to 0 < x < 1). In
fact we work with 0 < ρ < ∞ as it is slightly simpler. Now

du

dx
=

dũ

dρ
.
dρ

dx
= −1

ε
ũρ and u′′(x) =

1

ε2
ũρρ,

so writing the differential operator in terms of ρ we get

−εu′′ + u′ = −1

ε

(

ũρρ + ũρ

)

=: L̃u.

The original asymptotic expansion
∑∞

n=0 un(x)εn in (3.4) satisfied

L

( ∞
∑

n=0

un(x)εn

)

= f,

so the correction v(ρ) that is to be added to this expansion must satisfy
L̃v = 0, i.e., vρρ + vρ = 0. This second-order differential equation needs
boundary conditions on v(ρ) at both ρ = 0 (which corresponds to x = 1)
and at ρ = ∞. We can now finally enforce the original boundary condition
u(1) = 0 by requiring that our modified asymptotic expansion satisfies this
condition, i.e., that ∞

∑

n=0

un(1)εn + v(0) = 0.

We want the function v to act like a boundary layer, which implies that
it dies off rapidly as ρ becomes large. Thus it is natural to impose the
boundary condition v(∞) = 0.

The two-point boundary value problem that defines v is now completely
specified and can be solved explicitly:

v(ρ) = e−ρv(0) = −e−(1−x)/ε
∞

∑

n=0

un(1)εn

= −e−(1−x)/ε
∞

∑

n=0

(

F (n)(1) − F (n)(0)
)

εn.
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Adding this term to (3.5), the new proposed expansion is

uas(x) :=
∞

∑

n=0

(

F (n)(x) − F (n)(0)
)

εn − e−(1−x)/ε
∞

∑

n=0

(

F (n)(1) − F (n)(0)
)

εn.

(3.6)
To show that (3.6) is indeed a valid asymptotic expansion, i.e., that

u(x) ∼ uas(x), set

θM (x) = u(x) −
M
∑

n=0

(

F (n)(x) − F (n)(0)
)

εn

+ e−(1−x)/ε
M
∑

n=0

(

F (n)(1) − F (n)(0)
)

εn

for M = 0, 1, 2, . . . . We shall bound θM by means of a suitably chosen barrier
function. Now θM (1) = 0 and θM (0) = e−1/ε

∑M
n=0

(

F (n)(1) − F (n)(0)
)

εn =

O
(

εM+1
)

. Also,

LθM (x) = f(x) −
M
∑

n=0

[

−εF (n+2)(x) + F (n+1)(x)
]

εn

= f(x) − F ′(x) + εM+1F (M+2)(x)

= εM+1F (M+2)(x),

where the series telescoped. For each w ∈ C[0, 1], set

‖w‖∞ = max
x∈[0,1]

|w(x)|.

Define the barrier function b(x) = CεM+1(1 + x), where the constant C ≥
‖F (M+2)‖∞ is chosen such that b(0) = CεM+1 ≥ |θM (0)|. Then Lb(x) =
CεM+1 ≥ |LθM (x)| for 0 < x < 1. By Corollary 2.2, |θM (x)| ≤ b(x) ≤
2CεM+1 for 0 ≤ x ≤ 1, and this is o(εM ) uniformly for x ∈ [0, 1].

Thus (3.6) is an asymptotic expansion of u(x) that is valid uniformly for
0 ≤ x ≤ 1.

Consider now the more general problem

−εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1, (3.7)

u(0) = A, u(1) = B,

where a(x) > α > 0 and b(x) ≥ 0 on [0,1], and A, B are given constants.

Remark 3.2. In fact, given that a(x) > 0 on [0,1], one can assume
without loss of generality that b(x) ≥ 0 (so Corollary 2.2 can be invoked),
provided that ε is sufficiently small. To see this, set u(x) = v(x)ekx where
the constant k is yet to be chosen; then Lu = f is equivalent to

−εv′′(x) + [a(x) − 2εk]v′(x) + [b(x) + ka(x) − εk2]v(x) = f(x)e−kx,
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and one can choose k such that the coefficients of v′ and v are both posit-
ive, so v satisfies a differential equation of the desired type. Any numerical
method for v will easily yield a numerical solution for u via the transform-
ation u(x) = v(x)ekx.

Lemma 3.3. Let u be the classical solution of (3.7). There exists a con-
stant C such that

‖u‖∞ ≤ C (3.8)

and
|u′(0)| ≤ C. (3.9)

Proof. Set z(x) = u(x)−A for 0 ≤ x ≤ 1. Then z(0) = 0, |z(1)| ≤ |B−A|
and

|Lz(x)| = |f(x) − Ab(x)| ≤ ‖f‖∞ + |A| ‖b‖∞.

Apply Corollary 2.2 to bound |z(x)| by the barrier function

θ(x) =
x

α

(

α|B − A| + ‖f‖∞ + |A| ‖b‖∞
)

.

This immediately implies (3.8), and (3.9) follows from

|u′(0)| = lim
x→0+

[|z(x)|/x] ≤ lim
x→0+

[θ(x)/x].

Inequality (3.9) shows that the solution u(x) of (3.7) has no boundary
layer at x = 0. It will in general have a boundary layer at x = 1, like
Example 3.1.

Away from x = 1, we have u(x) ≈ u0(x), where u0(x) is the solution of
the reduced problem

a(x)u′
0(x) + b(x)u0(x) = f(x) for 0 < x < 1, u(0) = A. (3.10)

This is the same u0(x) as the first term in (3.4). An analysis similar to
that for (3.1) will construct functions un(x) and vn(x) such that, for k =
0, 1, 2, . . . ,

u(x) =
k

∑

n=0

un(x)εn +
k

∑

n=0

vn(x)εn + εk+1R(x, ε, k), (3.11)

where for all i and n we have

|u(i)
n (x)| ≤ C = C(i, n), |v(i)

n (x)| ≤ Cε−ie−α(1−x)/ε

with C = C(i, n), and |R(x, ε, k)| ≤ C = C(k) uniformly for 0 ≤ x ≤ 1.
Hence ∞

∑

n=0

un(x)εn +
∞

∑

n=0

vn(x)εn

is an asymptotic expansion of u(x) that is valid uniformly for 0 ≤ x ≤ 1.
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Remark 3.4. If in (3.7) we have a(x) < 0 on [0,1], then the change of
variable x �→ 1 − x reduces the problem to the case a(x) > 0 already
considered. Thus the essential nature of u(x) remains unaltered except that
the boundary layer is now at x = 0.

If a(x) changes sign on [0,1] then the solution u(x) may have interior
layers and/or boundary layers; see Roos et al. (1996, §I.1.2).

Further examples of asymptotic expansions of solutions of singularly per-
turbed problems can be found in Kevorkian and Cole (1996). For a compre-
hensive discussion of the construction of asymptotic expansions for a large
variety of convection-diffusion problems in n dimensions, see Il’in (1992).

3.2. Bounds on derivatives

Asymptotic expansions of the solution u of a convection-diffusion problem
such as (3.1) give us a good idea of how u behaves. To analyse numerical
methods, information on the derivatives of u is also needed, and this is now
presented.

Consider the general convection-diffusion problem

Lu(x) := −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1, (3.12)

u(0) = u(1) = 0,

where a(x) > α > 0 and b(x) ≥ 0 on [0,1]. Assume that a and b lie in
C∞[0, 1].

We already know from Lemma 3.3 that |u′(0)| ≤ C; the next result, which
is due to Kellogg and Tsan (1978), tells us what happens on all of [0,1].

Theorem 3.5. For i = 0, 1, 2, . . . and ε sufficiently small, there exists a
constant C = C(i) such that

|u(i)(x)| ≤ C
(

1 + ε−ie−α(1−x)/ε
)

for 0 ≤ x ≤ 1. (3.13)

Proof. The case i = 0 is covered by Lemma 3.3. The case i = 1 is proved
by a clever but elementary argument using integrating factors. Then the
result can be deduced for i = 2, 3, . . . by an inductive argument. See Kellogg
and Tsan (1978) or Roos et al. (1996, p. 9) for the details.

Remark 3.6. If in (3.12) we replace the Dirichlet boundary condition
u(1) = 0 at the layer by a Neumann boundary condition u′(1) = k (for some
constant k), then (3.13) becomes

|u(i)(x)| ≤ C
(

1 + ε1−ie−α(1−x)/ε
)

for i = 0, 1, 2, . . . and 0 ≤ x ≤ 1.

That is, the first-order derivative of u is bounded at x = 1 as ε → 0, but
higher-order derivatives still blow up. On a plot of u(x) there is no obvious
layer at x = 1, but the function is nevertheless not entirely tame.
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One might ask: Can we not obtain bounds on derivatives of u simply
by differentiating uniform asymptotic expansions, such as (3.11)? This is
tempting, but we have developed no theory that controls the difference
between a derivative of u and the same derivative of its asymptotic expan-
sion. In general the differentiation of asymptotic expansions of functions is
not rigorously justified, but for solutions of elliptic differential equations a
theory can be established. This approach is outlined in Theorem 3.7 below
and leads not only to bounds on the derivatives of u but also to a convenient
decomposition of u.

3.3. Decompositions of the solution

In Theorems 3.7 and 3.9 we show that u(x) can be written as the sum of
a well-behaved term and a layer term. Such decompositions of u aid our
insight when constructing accurate numerical methods and are often needed
in the rigorous analysis of such methods.

Theorem 3.7. (standard decomposition of u) Let u be the solution
of (3.12). Let q be a positive integer. Then there is a splitting u = S + E
such that, for 0 ≤ j ≤ q, the inequalities

‖S(j)‖∞ ≤ C and |E(j)(x)| ≤ Cε−je−α(1−x)/ε for 0 ≤ x ≤ 1

hold true for some constant C = C(q).

Proof. Recall the standard asymptotic expansion of u(x) given in (3.11),
and for convenience write R(x) for the remainder R(x, ε, k). Observe that we
have a bound only on ‖R‖∞: no information is available on the derivatives
of R(x). As the un and vn are computed explicitly and Lu = f , one can de-
termine LR(x) from (3.11). Now the deep a priori estimates of Schauder for
elliptic differential equations (Ladyzhenskaya and Ural’tseva 1968, p. 110)
will yield the bound ‖R(j)‖∞ ≤ Cε−j for 0 ≤ j ≤ q.

Choosing k = q − 1 in (3.11), set

S =

q−1
∑

n=0

un(x)εn + εqR(x) and E(x) =

q−1
∑

n=0

vn(x)εn.

The result now follows immediately from what is known about the terms in
S and E.

In this theorem and other similar results, S is called the smooth part of
u and E the layer part . In the literature dealing with singularly perturbed
differential equations, ‘smooth’ is generally used in this non-standard way
to mean that a function has certain low-order derivatives bounded inde-
pendently of the perturbation parameter.

Theorem 3.5 is adequate when proving convergence of some numerical
methods for (3.12), but for others it is convenient to invoke Theorem 3.7 in
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order to analyse separately the smooth and layer parts of u. At first sight
Theorem 3.7 seems the stronger of the two results, but this is not the case,
as Linß (2001) showed.

Theorem 3.8. Theorems 3.5 and 3.7 are equivalent.

Proof. Clearly Theorem 3.7 implies Theorem 3.5.
For the converse implication, assume that (3.13) holds true and let q be

an arbitrary but fixed positive integer. Set x∗ = 1 − (qε/α) ln(1/ε) and
define S(x) = u(x) for 0 ≤ x ≤ x∗. Then (3.13) and the choice of x∗ ensure
that |S(j)(x)| ≤ C for 0 ≤ j ≤ q and 0 ≤ x ≤ x∗. Consequently one can
(using a Taylor expansion of S(x) about x = x∗) extend S to [0, 1] with
|S(j)(x)| ≤ C for 0 ≤ j ≤ q and 0 ≤ x ≤ 1.

Now set E = u − S. Then E(x) ≡ 0 for 0 ≤ x ≤ x∗, and for x∗ < x ≤ 1
we have

|E(q)(x)| ≤ |u(q)(x)| + |S(q)(x)| ≤ C
(

1 + ε−qe−α(1−x)/ε
)

≤ Cε−qe−α(1−x)/ε

from the definition of x∗. Using induction, we integrate E(k)(x) for k =
q, q − 1, . . . , 1 to get

|E(k−1)(x)| ≤
∣

∣

∣

∣

∫ x

x∗

E(k)(s) ds

∣

∣

∣

∣

≤ C

∫ x

x∗

ε−ke−α(1−s)/ε ds

≤ Cε−(k−1)e−α(1−x)/ε

for x∗ < x ≤ 1.

For the analysis of certain finite difference methods on Shishkin meshes
(which we shall meet in Section 6), we need a decomposition of u with a fur-
ther property that is originally due to Shishkin: see the references in Farrell,
Hegarty, Miller, O’Riordan and Shishkin (2000) and Miller, O’Riordan and
Shishkin (1996). By a modification of the construction of the asymptotic
expansion (3.11) as described in Dobrowolski and Roos (1997) and Miller
et al. (1996), we can prove the following strengthening of Theorem 3.7.

Theorem 3.9. (Shishkin decomposition of u) Let u be the solution
of (3.12). Let q be a nonnegative integer. Then there is a splitting u = S+E
such that, for 0 ≤ j ≤ q, the inequalities

‖S(j)‖∞ ≤ C and |E(j)(x)| ≤ Cε−je−α(1−x)/ε for 0 ≤ x ≤ 1 (3.14)

hold true for some constant C = C(q), and in addition

LS(x) = f(x) and LE(x) = 0 for 0 ≤ x ≤ 1.
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4. Finite difference methods in one dimension

Consider the convection-diffusion problem

Lu(x) := −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1, (4.1)

u(0) = u(1) = 0,

where 0 < ε ≪ 1, a(x) > α > 0 and b(x) ≥ 0 on [0,1]. Assume that a and
b lie in C∞[0, 1].

Let N be a positive integer. Partition [0,1] by the equidistant mesh
xi = ih for i = 0, . . . , N , where h := 1/N . We aim to compute an approx-
imation {uN

i }N
i=0 of {ui}; here and subsequently we write ui for u(xi), ai for

a(xi), etc.

Standard discretizations of differential equations use a central difference

approximation of the convective term. That is, one approximates u′(xi) by
(uN

i+1 − uN
i−1)/(2h). Using this discretization and the standard approxima-

tion (uN
i−1 − 2uN

i + uN
i+1)/h2 of u′′(xi) produces a difference scheme whose

matrix B is tridiagonal with ith row
(

0 . . . 0 − ε

h2
− ai

2h

2ε

h2
+ bi − ε

h2
+

ai

2h
0 . . . 0

)

(4.2)

for i = 1, . . . , N − 1. The 0th and Nth rows of B, which incorporate the
boundary conditions, are (1 0 . . . 0) and (0 . . . 0 1). The right-hand side of
the scheme is (0 f1 f2 . . . fN−1 0)T .

In the particular case where a(x) ≡ f(x) ≡ 1 and b(x) ≡ 0, the solution
of this difference scheme is

uN
i = xi −

rN−i − rN

1 − rN
, where r =

2ε − h

2ε + h
.

In practice one usually has N ≪ 1/ε, so ε ≪ h and r ≈ −1. Consequently
the computed solution will oscillate as i varies, quite unlike the true solution
(3.3). See Figure 4.1.

Remark 4.1. To see that the computed solution is inaccurate near x = 1
in the general case (4.1), consider (4.2) with j = N − 1. Taking ε ≪ h2,
this equation is essentially

fN−1 =
aN−1(u

N
N − uN

N−2)

2h
+ bN−1u

N
N−1 = −

aN−1u
N
N−2

2h
+ bN−1u

N
N−1,

on applying the boundary condition. That is, uN
N−2 = O(h); but because

of the boundary layer in u(x) at x = 1 we expect that uN−2 is not close
to zero. Thus uN

N−2 is far from uN−2, and this is due to oscillations in the
computed solution.

What has gone wrong?
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Figure 4.1. Solution to (4.1) with ε = 0.01, a ≡ 1, b ≡ 0,
f ≡ 1 computed by central differencing with N = 16.

A square matrix A = (Aij) is said to be an M -matrix if Aij ≤ 0 for
all i �= j and A−1 exists with (A−1)ij ≥ 0 for all i, j. Difference schemes
that employ M -matrices are common because they are desirable: they are
generally stable, and more amenable to analysis. Our central difference
scheme above fails to satisfy the M -matrix sign condition on the off-diagonal
entries since Bi,i+1 > 0 when ε is small relative to h. If h‖a‖∞ ≤ 2ε, then
the sign condition is satisfied and it turns out that the difference method
gives an acceptable computed solution, but to enforce this inequality when
ε is small is impractical in many problems (especially in partial differential
equations) since it can lead to an intolerably large number of mesh points.

The second M -matrix requirement – that A−1 exists with (A−1)ij ≥ 0 for
all i and j – does not seem easy to verify in practice. Fortunately there are
more tractable alternatives, as stated in the next result.

Lemma 4.2. Suppose that the n × n matrix A = (Aij) satisfies Aij ≤ 0
for all i �= j. Then A−1 exists and (A−1)ij ≥ 0 for all i, j if either of the
following two conditions is satisfied:

(i) there exists a vector v > 0 such that Av > 0 (here and below, inequal-
ities like this are understood to hold true component-wise)

(ii) A is strictly diagonally dominant with aii > 0 for all i.

Proof. For a proof that the first condition is sufficient, see Bohl (1981); for
the second, see, e.g., Quarteroni and Valli (1994, Lemma 2.1.1).
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One can often construct a vector that satisfies condition (i) of Lemma 4.2
by finding a function w(x) such that w > 0 and Lw > 0, then forming v by
restricting w to the mesh.

For M -matrices we have discrete analogues of Lemma 2.1 and Corol-
lary 2.2.

Lemma 4.3. (discrete maximum principle) Let A be an M -matrix.
If v is a vector with Av ≥ 0, then v ≥ 0.

Proof. v = (A−1)(Av) ≥ 0, because A−1 ≥ 0 and Av ≥ 0.

Lemma 4.4. (discrete barrier function) Let A be an M -matrix. If
v1,v2 are vectors such that |Av1| ≤ Av2, then |v1| ≤ v2.

Proof. Now A(v2 − v1) ≥ 0, so v2 − v1 ≥ 0 by Lemma 4.3. Similarly
v2 + v1 ≥ 0, and the result follows.

The boundary data requirement of Corollary 2.2 seems to be absent from
Lemma 4.4, but this is deceptive: the first and last rows of A include this
information (see the construction of the matrix B above).

Returning to our difference scheme, we see that the ‘incorrect’ sign of
Bi,i+1 comes from the central difference approximation of u′(xi). This ap-
proximation is generally recommended in basic courses in numerical meth-
ods because it gives O(h2) consistency error when ε = 1, but this is irrelevant
when the method is (as we found here) unstable. To cure the instability,
for convection-diffusion problems one can approximate u′(xi) by the simple

upwinding formula (uN
i − uN

i−1)/h. Although the consistency error is now
only O(h) when ε = 1, the ith row of the scheme is

(

0 . . . 0 − ε

h2
− ai

h

2ε

h2
+

ai

h
+ bi − ε

h2
0 . . . 0

)

.

Hence, writing A for the associated (N+1)×(N+1) matrix that incorporates
the boundary conditions, we have Aij ≤ 0 for i �= j, as desired.

Lemma 4.5. The matrix A associated with the simple upwind scheme is
an M -matrix.

Proof. Clearly Aij ≤ 0 for i �= j. Define the vector v by vi = 1 + xi for
i = 0, . . . , N . Then a simple calculation shows that (Av)i ≥ min{1, α} > 0
for all i. The result now follows from Lemma 4.2.

Note that upwinding for (3.12) uses the one-sided difference (uN
i −uN

i−1)/h

to approximate u′(xi), but the alternative choice of (uN
i+1 − uN

i )/h would
not give the correct sign pattern in the matrix. Upwinding means taking a
one-sided difference on the side away from the layer , so for ε small relative
to h2 the scheme essentially decouples the boundary condition at x = 1
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Figure 4.2. Solution to (4.1) with ε = 0.01, a ≡ 1, b ≡ 0,
f ≡ 1 computed by simple upwinding with N = 16.

from the values at the interior nodes; this is exactly what we need to avoid
computational infelicities like that of Remark 4.1.

The first satisfactory investigation into the accuracy of simple upwinding
is due to Kellogg and Tsan (1978). Their delicate analysis derived a tight
bound on the consistency error of the method, then converted this to the
following convergence result by means of discrete barrier functions.

Theorem 4.6. (error bound for simple upwinding on an equidistant
mesh) Let {uN

i }N
i=0 be the solution to (4.1) computed using simple up-

winding on an equidistant mesh with N subintervals. Suppose that h ≥ ε.
Then there exists a constant C such that

|ui − uN
i | ≤ C

[

h + exp

(−α(1 − xi)

αh + 2ε

)]

for i = 0, . . . , N.

No proof of this result is given here since it can be found in Kellogg and
Tsan (1978) or Roos et al. (1996, §I.2.1.2), and in any case we shall present
a related analysis in Section 5.

If xi is bounded away from 1, then Theorem 4.6 implies that

|ui − uN
i | ≤ C

[

h + exp

(−α(1 − xi)

αh + 2h

)]

≤ Ch. (4.3)

That is, the upwind scheme yields an O(h)-accurate solution away from
x = 1. But at interior mesh points that lie close to or inside the layer, the
scheme is only O(1)-accurate. See Figure 4.2.
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Remark 4.7. The error bound (4.3) is sharp and can lead to disconcerting
and puzzling results in numerical experiments. Suppose that for a given
convection-diffusion problem, initially we have an equidistant mesh with
h ≫ ε, so all mesh points in (0,1) lie well outside the layer. Now consider
what happens if we repeatedly bisect each interval and compute a fresh
solution. At first the interior mesh points remain outside the layer, so by
(4.3) the numerical results show first-order convergence of the maximum
nodal error. But as we continue to bisect the mesh, eventually mesh points
begin to move into the layer – where the accuracy of the computed solution
is only O(1) – so at this stage mesh bisection causes the maximum nodal
error to increase.

While upwinding does remove unnatural oscillations from the computed
solution, we pay a price for this: the layers in the computed solution are
excessively smeared, i.e., are not as steep as they should be. See Figure 4.2.
To put this another way, upwinding seems to produce an accurate solution
for a different problem where the diffusion coefficient is much greater than ε.
We now make this visual observation more precise.

The simple upwinding discretization is

(−εu′′ + au′ + bu)(xi)

�→ −ε

h2

(

uN
i+1 − 2uN

i + uN
i−1

)

+
ai

h

(

uN
i − uN

i−1

)

+ biu
N
i

=−
(

ε +
hai

2

)

1

h2

(

uN
i+1 − 2uN

i + uN
i−1

)

+
ai

2h

(

uN
i+1 − uN

i−1

)

+ biu
N
i .

That is, upwinding applied to Lu = f is the same method as standard
central differencing applied to the modified differential equation L̃u := −(ε+
ha/2)u′′+au′+bu = f . The diffusion coefficient in this modified differential
equation is so large (relative to ε) that central differencing produces an M -
matrix and yields an accurate approximation of the true solution of L̃u = f ,
but of course near x = 1 this solution is not close to the solution of Lu = f .

The amount ha(x)/2 by which the diffusion coefficient was apparently
increased is called the artificial diffusion introduced by upwinding.

This relationship between simple upwinding, Lu = f and L̃u = f opens
the door to a flood of possibilities: one can choose a certain amount of
artificial diffusion to add to the problem Lu = f , then apply a standard
(non-upwinded) numerical method, with the aim of retaining stability (i.e.,
excluding oscillations) while minimizing the smearing of layers in the com-
puted solution. Pursuing this approach turns out to be quite fruitful; in fact,
stable numerical methods on uniform meshes for convection-diffusion ODEs
are usually equivalent to modifying the diffusion in the original differential
equation, then applying a standard method such as central differencing –
but for PDEs, the connection may be less straightforward.
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To summarize: when a standard numerical method is applied to a con-
vection-diffusion problem, if there is too little diffusion then the computed
solution is often oscillatory, while if there is too much diffusion, then the
computed layers are smeared.

We now consider difference schemes that are accurate both outside and
inside the boundary layer. A difference scheme on a family of meshes is said
to be robust or uniformly convergent (with respect to ε) of order β > 0 in

the discrete L∞ norm if its solution {uN
i } satisfies |ui − uN

i | ≤ CN−β for
i = 0, . . . , N and all sufficiently small H, independently of ε. Here N is the
number of mesh intervals, H is the mesh diameter and β is some positive
constant that is independent of the mesh and of ε.

A uniformly convergent scheme must address explicitly the exponential
nature of the layer part of the solution u, as the next result shows.

Theorem 4.8. (necessary conditions for uniform convergence on
an equidistant mesh) Assume that we have an equidistant mesh of width
h. Suppose that a difference scheme for the problem −εu′′+au′ = f, u(0) =
u(1) = 0, with a and f positive constants, can be written in the form

θ−uN
i−1 + θ0u

N
i + θ+uN

i+1 = hfi for i = 1, . . . , N − 1, uN
0 = uN

N = 0,
(4.4)

where each θ = θ(h, ε) depends only on the ratio h/ε. If the scheme is
uniformly convergent for some β > 0, then

θ− + θ0 + θ+ = 0 and e−ah/εθ− + θ0 + eah/εθ+ = 0. (4.5)

Proof. The idea is to use uniform convergence to replace the uN
j in (4.4)

by uj , then investigate what happens as h → 0 in the special case where h/ε
is held constant, so each θ remains constant. See Roos et al. (1996, p. 40)
for the details.

The hypothesis of Theorem 4.8 that each θ depend only on the ratio h/ε
is not restrictive. The first condition in (4.5) is satisfied by all plausible
difference schemes; it is the second condition that distinguishes uniformly
convergent schemes. Simple upwinding fails to satisfy that second condition.

Example 4.9. On equidistant meshes, the best-known uniformly conver-
gent scheme for (4.1) is the Il’in–Allen–Southwell difference scheme. Allen
and Southwell (1955) proposed it without any analysis of its behaviour, then
it was independently rediscovered by Il’in (1969), who gave a complicated
analysis of its convergence. The scheme is

− aie
ρi

h(eρi − 1)
uN

i−1 +

[

ai(e
ρi + 1)

h(eρi − 1)
+ bi

]

uN
i − ai

h(eρi − 1)
uN

i+1 = fi

for i = 1, . . . , N − 1,

where ρi = hai/ε, with uN
0 = uN

N = 0. It computes {ui} exactly in the
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special case where a, b and f are constants. Recalling our discussion above
of adding artificial diffusion, this scheme is obtained if central differencing
is applied to the modified differential equation

−ε

(

ha(x)

2ε
coth

ha(x)

2ε

)

u′′(x) + a(x)u′(x) + b(x)u(x) = f(x).

Il’in’s scheme can be generated in a wide variety of ways (Roos 1994). In
Kellogg and Tsan (1978) discrete barrier functions were used for the first
time in the convection-diffusion literature to show that the solution {uN

i }
computed by this scheme is uniformly convergent: |ui − uN

i | ≤ CN−1 for
all i.

The more complicated El Mistikawy–Werle 3-point scheme has the form

r−i uN
i−1 + r0

i u
N
i + r+

i uN
i+1 = qi−1fi−1 + q0

i fi + q+
i+1fi+1 for i = 1, . . . , N − 1.

It achieves second-order uniform convergence on equidistant meshes, i.e.,
maxi |ui − uN

i | ≤ CN−2.
See Roos et al. (1996, §I.2.1.3) for more information on both of these

schemes.
Numerical methods like these, whose coefficients involve exponential func-

tions of h/ε, are known collectively as exponentially fitted schemes. While
they have become less popular in recent years, nevertheless exponential fit-
ting is the mainstay of the FEM package PLTMG and is still widely used
in semiconductor device modelling (where the Il’in scheme is known as the
Scharfetter–Gummel scheme).

Remark 4.10. In the case of a Neumann boundary condition the layer is
weaker (Remark 3.6). Simple upwinding on an equidistant mesh then yields
(Linß 2005)

|ui − uN
i | ≤ Ch for i = 0, . . . , N.

5. Shishkin meshes

When numerically solving a convection-diffusion problem, it seems reason-
able to cluster mesh points in the layer – where the solution u(x) is most
troublesome – instead of spreading them equidistantly over [0,1]. Graded
meshes, where the mesh width gets finer and finer as one moves closer and
closer to x = 1, have been advocated by several authors; see Roos et al.

(1996, §I.2.4.2) for references. Since the early 1990s a simpler piecewise-
equidistant mesh has been enthusiastically propagated by Shishkin and
other authors (Farrell et al. 2000, Miller et al. 1996).

Consider the convection-diffusion problem (4.1). Set

σ = min{1/2, (2/α)ε ln N}.
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Figure 5.1. Shishkin mesh with N = 16.

We shall assume that σ = (2/α)ε ln N , as the other value of σ occurs only
when N is exponentially large relative to ε, which is rare in practice. Then
the mesh transition point is defined to be 1 − σ. Let N be an even integer.
Divide each of [0, 1 − σ] and [1 − σ, 1] by an equidistant mesh with N/2
subintervals; see Figure 5.1.

The coarse part of this Shishkin mesh has spacing H = 2(1 − σ)/N , so
N−1 ≤ H ≤ 2N−1. The fine part has spacing h = 2σ/N = (4/α)εN−1 lnN ,
so h ≪ ε. On the mesh, xi = iH for i = 0, . . . , N/2 and xi = 1 − (N − i)h
for i = N/2 + 1, . . . , N . Set hi = xi − xi−1 for each i. Note that the mesh
width hi changes abruptly at i = N/2, and H/h = α(1 − σ)/(2ε ln N) can
be very large.

Remark 5.1. Nonequidistant meshes for convection-diffusion problems
are sometimes described as ‘layer-resolving’ meshes. One might presume
that this terminology means that wherever the derivatives of u(x) are large,
the mesh is sufficiently fine to control the truncation error of the difference
scheme. But the Shishkin mesh does not fully resolve the layer: |u′(x)| ≈
Cε−1 exp(−α(1 − x)/ε), so |u′(1 − σ)| ≈ Cε−1 exp(−2 lnN) = Cε−1N−2,
which in general is large since typically ε ≪ N−1. Thus |u′(x)| is still large
on part of the first coarse-mesh interval [xN/2−1, xN/2].

This is not a drawback: it is in fact the genius of the Shishkin mesh.
For if one set out to construct a two-stage piecewise-equidistant mesh as
we have done, but with the additional requirement that the mesh be fine
enough to control the local truncation error wherever |u′(x)| is very large,
then the number of mesh points required would have to grow like ln(1/ε)
as ε got smaller. Shishkin’s insight was that one could achieve satisfactory
theoretical and numerical results without resolving all of the layer. His
construction enables us to work with a fixed number (N +1) of mesh points
that is independent of the value of ε.

We apply simple upwinding. For each mesh function {vi}N
i=0, set D−vi =

(vi − vi−1)/hi and

δ2vi =
2

hi + hi+1

(

vi+1 − vi

hi+1
− vi − vi−1

hi

)

.
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Our difference scheme is

−εδ2uN
i + aiD−uN

i + biu
N
i = fi for i = 1, . . . , N − 1, uN

0 = uN
N = 0.

(5.1)
It is straightforward to check (cf. Lemma 4.5) that the matrix LN associated
with (5.1) is an M -matrix. To analyse the convergence of the method, recall
the Shishkin decomposition u = S +E of Theorem 3.9 and split the discrete
solution {uN

i } in an analogous manner: define {SN
i } and {EN

i } by

LNSN
i = (LS)i for i = 1, . . . , N − 1, SN

0 = S(0), SN
N = S(1),

LNEN
i = (LE)i = 0 for i = 1, . . . , N − 1, EN

0 = E(0), EN
N = E(1).

Then uN
i = SN

i + EN
i for all i, and

|ui − uN
i | = |(S + E)i −

(

SN
i + EN

i

)

| ≤ |Si − SN
i | + |Ei − EN

i |. (5.2)

We shall bound each difference separately.

Lemma 5.2. There exists a constant C0 such that

|Si − SN
i | ≤ C0N

−1 for i = 0, . . . , N.

Proof. As the derivatives of S are bounded, a standard consistency error
analysis shows that

|LN (Si − SN
i )| = |LNSi − (LS)i|

≤ 2ε

∫ xi+1

xi−1

|S′′′(x)|dx + ai

∫ xi

xi−1

|S′′(x)|dx

≤ C(xi+1 − xi−1)

≤ CN−1 (5.3)

for i = 1, . . . , N−1. Set wi = C0N
−1xi for all i, where the positive constant

C0 will be chosen so that {wN
i } is a discrete barrier function for {Si −SN

i }.
Now

LNwi = aiC0N
−1 + biwi > αC0N

−1 ≥ |LNSi − (LS)i|
by (5.3), provided that C0 is a sufficiently large constant. Clearly w0 = 0 =
|S0 − S0

0 | and wN = C0N
−1 ≥ 0 = |SN − SN

N |. Thus Lemma 4.4 can be
applied and we get |Si − SN

i | ≤ wi ≤ C0N
−1 for all i, as desired.

To bound |Ei − EN
i | one again invokes Lemma 4.4, but the approach is

less direct because E(x) has large derivatives on part of the coarse mesh
(see Remark 5.1). We show first that |Ei| and |EN

i | are small on [0, 1 − σ]
because they decay rapidly away from x = 1, then on [1 − σ, 1] the mesh is
so fine that |Ei − EN

i | can be bounded by a consistency error analysis like
that of Lemma 5.2.
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From (3.14),

|Ei| ≤ Ce−α(1−(1−σ))/ε = CN−2 ≤ CN−1 for i = 0, . . . , N/2. (5.4)

In the next lemma a discrete barrier function is used to show that |EN
i |

also is small when i ≤ N/2. Set

Zi =
i

∏

j=1

(

1 +
αhj

2ε

)

for i = 0, . . . , N.

Lemma 5.3. There exists a constant C such that

|EN
i | ≤ CN−1 for i = 0, . . . , N/2.

Proof. For i = 1, . . . , N , a calculation shows that there exists a constant
C1 > 0 such that

LNZi ≥
C1

max{ε, hi}
Zi. (5.5)

Now et ≥ 1 + t for all t ≥ 0, so

Zi

ZN
=

N
∏

j=i+1

(

1 +
αhj

2ε

)−1

≥
N
∏

j=i+1

e−αhj/(2ε) = e−α(1−xi)/(2ε). (5.6)

Set Yi = C2Zi/ZN for i = 0, . . . , N . Then LNYi = (C2/ZN )LNZi ≥ 0 =
|LNEN

i | for i = 1, . . . , N − 1, by (5.5) and the definition of {EN
i }. Also

YN = C2 ≥ |E(1)| = |EN
N | if the constant C2 is chosen sufficiently large, by

the bound on |E(x)| given by inequality (3.14). Finally, (5.6) implies that

Y0 =
C2Z0

ZN
≥ C2e

−α/(2ε) ≥ C2e
−α/ε ≥ |E(0)| = |EN

0 |

provided that the constant C2 is chosen sufficiently large, where we appealed
again to (3.14). Thus we can choose C2 so that the conditions of Lemma
4.4 are satisfied, i.e., {Yi} is a discrete barrier function for {EN

i }, and it
follows that

|EN
i | ≤ Yi =

C2Zi

ZN
for all i. (5.7)

But for i = 0, . . . , N/2,

Zi

ZN
≤

ZN/2

ZN
=

N
∏

j=1+N/2

(

1 +
αh

2ε

)−1

=
(

1 + 2N−1 lnN
)−N/2

≤ N−1e(ln2 N)/N ≤ CN−1

for some constant C (to prove the penultimate inequality, take a logarithm
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of the left-hand side and notice that ln(1+t) ≥ t−t2/2 for t ≥ 0). Combining
this inequality with (5.7), the proof is complete.

Corollary 5.4. There exists a constant C such that

|Ei − EN
i | ≤ CN−1 for i = 0, . . . , N/2.

Proof. This is immediate from (5.4) and Lemma 5.3.

It remains only to bound |Ei − EN
i | for i > N/2.

Lemma 5.5. There exists a constant C such that

|Ei − EN
i | ≤ CN−1 lnN for i = N/2 + 1, . . . , N.

Proof. We shall apply a discrete barrier function argument at the nodes
{xi}N

i=N/2 by considering the discretization of a two-point boundary value

problem on the interval [1 − σ, 1]. Observe that when LN is restricted to
the interior nodes of this interval it still yields an M -matrix.

Recalling the bounds on |E(j)(x)| in (3.14), a standard consistency error
analysis shows that for i = N/2 + 1, . . . , N − 1,

|LN (Ei − EN
i )| = |LNEi − (LE)i|

≤ 2ε

∫ xi+1

xi−1

|E′′′(x)|dx + ai

∫ xi

xi−1

|E′′(x)|dx

≤ C

∫ xi+1

xi−1

ε−2e−α(1−x)/ε dx

= Cε−1e−α(1−xi)/ε sinh(αh/ε)

≤ Cε−1N−1(lnN)e−α(1−xi)/ε,

since sinh(αh/ε) = sinh(4N−1 lnN) ≤ CN−1 lnN for all N ≥ 2.
Set φi = C3N

−1(lnN)(1+Zi/ZN ) for i = N/2, . . . , N , where the constant
C3 will be chosen later. By (5.5) and (5.6),

LNφi ≥ C3N
−1(lnN)(LNZi)/ZN

≥ C3C1ε
−1N−1(lnN)Zi/ZN

≥ C3C1ε
−1N−1(lnN)e−α(1−xi)/(2ε)

for i = N/2+1, . . . , N . Consequently LNφi ≥ |LN (Ei−EN
i )| if the constant

C3 is sufficiently large. Furthermore, we can choose C3 such that

φN/2 = C3N
−1(lnN)(1 + ZN/2/ZN ) ≥ C3N

−1(lnN) ≥ |EN/2 − EN
N/2|

by Corollary 5.4, and φN = 2C3N
−1(lnN) > 0 = |EN − EN

N |.
Thus {φi} is a discrete barrier function for {Ei−EN

i }, and Lemma 4.4 now
implies that for i = N/2, . . . , N we have |Ei − EN

i | ≤ φi ≤ 2C3N
−1 lnN .
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The final convergence result can now be stated.

Theorem 5.6. (uniform convergence of simple upwinding on a
Shishkin mesh) There exists a constant C such that the solution {uN

i }
of (5.1) satisfies

|ui − uN
i | ≤ CN−1 lnN for i = 0, . . . , N.

Proof. Combine (5.2), Lemma 5.2, Corollary 5.4 and Lemma 5.5.

Observe that uniform convergence is attained even though the consistency
error in the maximum norm is not bounded uniformly in ε.

Roos (1996) shows that the condition number of the discrete linear sys-
tem associated with (5.1) is O(ε−2N2 ln−2 N), which is uncomfortably large
when ε is small, but that an easy preconditioning by diagonal scaling (ap-
proximate equilibration) reduces this condition number to O(N2 ln−1 N).

Remark 5.7. The precise choice of mesh transition point 1 − σ in the
Shishkin mesh is of both theoretical and computational interest. A careful
examination of the proof of Theorem 5.6 reveals that σ should have the
form (k/α)εφ(N), where φ(N) → ∞ but N−1φ(N) → 0 as N → ∞, and k
is some constant. The simplest choice for φ(N) is lnN . The choice k = 2
used in our definition of σ subtly enters the proof of Lemma 5.3 during the
final chain of inequalities that bound Zi/ZN . How to choose k in an optimal
way is discussed in Stynes and Tobiska (1998). It is shown there, using an
argument close to our proof of Theorem 5.6, that for a variant of simple
upwinding one has

|ui − uN
i | ≤ C max{N−k, kN−1 lnN} for i = 0, . . . , N.

The sharpness of this bound is confirmed by numerical experiments. Con-
sequently choosing k larger than 1 only slightly diminishes the numerical
accuracy of the method, but choosing k smaller than 1 causes a noticeable
deterioration in the numerical rate of convergence.

Andreev and Kopteva (1996) show that for central differencing on a
Shishkin mesh, the computed solution {uN

i } satisfies |ui−uN
i | ≤ CN−2 ln2 N

for all i. The proof is difficult as the scheme does not satisfy a discrete
maximum principle. Numerical experience (Linß and Stynes 2001b) with
analogues of this approach for two-dimensional problems reveals that it is
quite expensive to solve the discrete linear system efficiently, so we shall not
pursue it further.

Remark 5.8. Error estimates in various norms for numerical methods on
Shishkin meshes usually include a multiplicative factor lnβ N for some β > 0.
This factor is asymptotically unimportant relative to the main convergence
factor N−k, where k > 0, but its effect is evident in numerical experiments.
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If we work with certain graded meshes (e.g., Bakhvalov meshes) then the
lnN factor disappears so these meshes yield a higher rate of convergence
but they are more complicated to construct.

The result of Theorem 5.6 can be extended to more general forms of
upwinding and to other non-equidistant layer-adapted meshes that are de-
signed for convection-diffusion problems. For an excellent survey of such
generalizations for problems in one and two dimensions, see Linß (2003).

6. Convection-diffusion problems in two dimensions

In two dimensions, the convection-diffusion equation takes the form

Lu(x, y) := −ε∆u(x, y) + a(x, y).∇u(x, y) + b(x, y)u(x, y) = f(x, y) (6.1a)

on Ω ⊂ R
2, with

u(x, y) = g(x, y) on ∂Ω, (6.1b)

where 0 < ε ≪ 1, and the functions a, b and f are assumed to be Hölder
continuous on Ω̄, the closure of Ω. We also assume that b ≥ 0 on Ω̄. Here Ω is
any bounded domain in R

2 with a piecewise Lipschitz-continuous boundary
∂Ω (e.g., a rectangle or a domain with differentiable boundary). Assume
that g is continuous except perhaps for a jump discontinuity at a single
point. Il’in (1992) gives asymptotic expansions of the solutions to several
specific cases of (6.1).

The differential operator L is elliptic, so (6.1) has a solution in C2(Ω);
see for example Gilbarg and Trudinger (2001). Recall that L satisfies the
maximum principle of Lemma 2.1.

Assume that |a| ≈ 1, so that convection dominates diffusion. In the
problems that we consider, the solution u(x, y) of (6.1) has an asymptotic
structure similar to that for one-dimensional problems. That is, analogously
to the case k = 0 in (3.11), one can write u as the sum of the solution to a
first-order PDE, plus layer(s), plus an O(ε) term.

To make this more precise, divide the boundary ∂Ω into 3 parts:

inflow boundary ∂−Ω = {x ∈ ∂Ω: a.n < 0}, (6.2a)

outflow boundary ∂+Ω = {x ∈ ∂Ω : a.n > 0}, (6.2b)

characteristic (tangential) flow boundary ∂0Ω = {x ∈ ∂Ω : a.n = 0}, (6.2c)

where n is the outward-pointing unit normal to ∂Ω. See Figure 6.1.
A typical solution u will have boundary layers – narrow regions close

to ∂Ω where |∇u| is large – along ∂+Ω and ∂0Ω. As in one-dimensional
problems, exceptional Dirichlet boundary conditions g can eliminate these
layers; recall the comments following Example 3.1. Also, Neumann bound-
ary conditions on some or all of ∂+Ω and ∂0Ω mean that layers are no longer
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∂
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Figure 6.1. Partition of ∂Ω.

visible there (cf. Remark 3.6). We shall exploit this property in some numer-
ical examples where Neumann boundary conditions are introduced so that
boundary layers will not distract the reader from other visual phenomena.

On most of Ω, u is approximately equal to u0(x, y), the solution of the
reduced problem

a(x, y).∇u0(x, y) + b(x, y)u0(x, y) = f(x, y) on Ω, u0 = g on ∂−Ω.
(6.3)

This first-order problem is the two-dimensional analogue of (3.10). Follow-
ing the standard theory of such PDEs, the characteristic traces or char-

acteristic curves or characteristics of (6.3) are the parametrized curves
(x(t), y(t)) in Ω defined by

x′(t) = a1(x, y), y′(t) = a2(x, y), (6.4)

with initial data (x(0), y(0)) = (x̂, ŷ), where (x̂, ŷ) is any point in ∂−Ω.
Thus one such curve emanates into Ω from each point in ∂−Ω. The function
u0(x, y) propagates itself along these curves: on each characteristic, (6.3)
simplifies to the ordinary differential equation

du0(t)

dt
+ bu0 = f (6.5)

with initial data u0(0) = g(x̂, ŷ), where we have abused the notation by
writing u0 as a function of t along each characteristic. As in fluid dynamics,
the direction of propagation a is often called the flow ; this explains the
terminology of (6.2).

We shall refer to the characteristics of (6.3) as the subcharacteristics

of (6.1).
Just like in one dimension, boundary layers occur where there is a mis-

match between the reduced solution u0 and the boundary data. This can
happen only along ∂+Ω and ∂0Ω. While all layers look much the same
when plotted, nevertheless there can be significant analytical differences
between them.
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Layers along ∂+Ω are called regular or exponential boundary layers. Writ-
ing �n = (n1, n2) for the unit outward-pointing normal to ∂Ω, then near ∂+Ω,
exponential layers are essentially multiples of the function

exp[−(a.n) d((x, y), ∂+Ω)/ε],

where d((x, y), ∂+Ω) denotes the distance from the point (x, y) to the out-
flow boundary. Thus in cross-section perpendicular to ∂+Ω these layers are
very similar to the boundary layers that we met in one dimension. Their
first-order derivatives in the direction perpendicular to the boundary have
magnitude O(1/ε), and the width of the layer (i.e., the distance one must
travel from the boundary before all first-order derivatives are bounded by
some constant C) is O(ε ln(1/ε)).

Layers along ∂0Ω are called parabolic or characteristic boundary layers.
In asymptotic expansions of u, these layers can be written as the solution of
a parabolic PDE but not as the solution to an ODE; they have a much more
complicated structure than exponential boundary layers. Their first-order
derivatives in the direction perpendicular to the boundary are O(1/

√
ε)

– not as large as for exponential layers – but the width of the layer is
O(

√
ε ln(1/ε)), so they are wider than exponential layers.

Example 6.1. In Figure 6.2 we plot the solution u(x, y) to the problem

−ε∆u(x, y) + ux(x, y) = 1 on Ω := (0, 1)× (0, 1), u(x, y) ≡ 0 on ∂Ω,

where ε = 0.01.
The inflow boundary ∂−Ω is the side x = 0 of Ω̄; the tangential flow

boundary comprises the sides y = 0 and y = 1; the outflow boundary is the
remaining side x = 1.

From (6.4) each subcharacteristic is parametrized by x′(t) = 1, y′(t) = 0,
so we can take x = t and the subcharacteristics are the lines y = k for
arbitrary constant k. Then by (6.5) the reduced problem u0, written as a
function of the parameter t, satisfies u′

0(t) = 1, with initial data u0(0) = 0.
Hence u0(t) = t, i.e., u0(x, y) = x for all (x, y) ∈ Ω.

On most of Ω one therefore has u(x, y) ≈ x. The side x = 1 of Ω̄ is
the outflow boundary ∂+Ω and an exponential layer appears there. The
tangential flow boundaries y = 0 and y = 1 have characteristic boundary
layers that grow in strength as x moves from 0 to 1 because of the increasing
discrepancy between u0 and the boundary condition.

In an asymptotic expansion of u, the leading term describing the layer
along y = 0 (the layer along y = 1 is of course analogous) is

v0

(

x,
y√
ε

)

= −
√

2

π

∫ ∞

s=y/
√

2εx
e−s2/2 u0

(

x − y2

2εs2
, 0

)

ds.
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Figure 6.2. Exponential boundary layer with two
characteristic boundary layers.

This is much more complicated than for an exponential layer, but at least
we can see that when deriving this term the correct choice for the local
stretched variable is (x, y/

√
ε).

As well as boundary layers, solutions of convection-diffusion problems in
two-dimensional domains can have interior layers if there is a discontinuity
in the boundary data on ∂−Ω. This phenomenon has no analogue in one-
dimensional problems. From the theory of first-order PDEs, if g has a jump
discontinuity at a point (x̂, ŷ) ∈ ∂−Ω, then u0 will be discontinuous across
the subcharacteristic Γ(x̂, ŷ) that passes through (x̂, ŷ). Now first-order
PDEs preserve Dirichlet boundary data discontinuities but second-order
elliptic PDEs smooth out such discontinuities, so the solution u(x, y) of
(6.1) will be continuous across Γ(x̂, ŷ). At the same time, u must be close
to u0 once we are a small distance away from Γ(x̂, ŷ). Combining these
facts, we deduce that u has an interior layer along the subcharacteristic
Γ(x̂, ŷ). Such layers have an asymptotic structure similar to characteristic
boundary layers; they are often referred to as parabolic or characteristic

interior layers.
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Figure 6.3. Straight interior layer.

Example 6.2. In Figure 6.3 we use the same differential operator as in
Example 6.1, with ε = 10−6. A jump discontinuity has been introduced in
the inflow boundary data:

g(0, y) =

{

1 for 0 ≤ y < 0.5,

0 for 0.5 < y ≤ 1.

Consequently the reduced solution is

u0(x, y) =

{

1 + x for 0 ≤ y < 0.5,

x for 0.5 < y ≤ 1.

This yields an interior layer along the subcharacteristic passing through the
discontinuity at (0.5, 0), that is, along the line y = 0.5. Neumann boundary
conditions have been applied on the sides y = 0 and y = 1 so no layers
are visible there, unlike Figure 6.2. A homogeneous Dirichlet boundary
condition is still assumed at x = 1, and again produces an exponential
outflow layer, but this layer is sharper than in Figure 6.2 because ε is much
smaller in the present example.
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Figure 6.4. Solution of Example 6.3.

Example 6.3. Consider the problem

Lu(x, y) := −ε∆u(x, y) + ux(x, y) + 2uy(x, y) = 0 on Ω := (0, 1) × (0, 1),

where the boundary condition is u(x, y) = g(x, y) with

g(x, y) =

{

0 when y = 0,

1 otherwise.

There is no tangential flow boundary. The inflow boundary ∂−Ω comprises
the sides x = 0 and y = 0 of Ω̄. In (6.5) the functions b and f are both zero,
so the reduced solution u0(x, y) is just the initial data on ∂−Ω propagated
along the subcharacteristics of L without change. These subcharacteristics
are the lines y = 2x + k for arbitrary constant k.

The solution u(x, y) is as usual very close to u0 away from layers. The
outflow boundary ∂+Ω comprises the sides x = 1 and y = 1 of Ω̄. Along the
portion 0 ≤ x ≤ 1/2 of the side y = 1 there is no layer because u0 = g there.
There are exponential boundary layers along the rest of ∂+Ω. An interior
layer emanates across Ω from the discontinuity in g at the point (0, 0), i.e.,
along the line y = 2x. See Figure 6.4, where ε = 0.001. The slightly diffuse
nature of the interior layer in this figure is an artifact of the method used
to compute u; see Remark 10.8.
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Figure 6.5. Curved interior layer.

Example 6.4. Finally we consider a problem with a curved interior layer:

−ε∆u + a.∇u = 0 on Ω := (0, 1) × (0, 1),

∇u.n = 0 on {(x, 0) : 0 ≤ x ≤ 1} =: ∂Ω1,

u = g on ∂Ω \ ∂Ω1,

where n is the outward-pointing unit normal to ∂Ω and

a(x, y) = (sin θ,− cos θ)

with θ the argument of the point (x, y) in polar coordinates. The function
g is defined by

g =



















1 for x = 0, 0 ≤ y ≤ 0.75,

0 for x = 0, 0.75 < y ≤ 1,

0 for 0 ≤ x ≤ 1, y = 1,

0 for x = 1, 0 ≤ y ≤ 1.

The Neumann condition on ∂Ω1 ensures that no outflow boundary layer
appears there.

The subcharacteristics are quarter-circles centred at the origin. Since
b = f = 0, the reduced solution merely propagates the inflow boundary val-
ues along these quarter-circles without changing their values. A computed
solution to this problem is shown in Figure 6.5 with ε = 0.0001.
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7. A priori estimates

In this section various a priori results for the solution of (6.1) are presented.
Many a priori analyses in the literature assume the condition

a(x, y) =
(

a1(x, y), a2(x, y)
)

> (α1, α2) > (0, 0) on Ω, (7.1)

which in the case where Ω is the unit square ensures that no characteristic
boundary layers are present.

Lemma 7.1. Assume that (7.1) holds true. Then the following results
hold.

(i) There exists a constant C, which depends on the domain Ω, such that

‖u‖L∞(Ω) ≤ ‖g‖L∞(∂Ω) +
C‖f‖L∞(Ω)

max{α1, α2}
. (7.2)

If Ω is the unit square, then C = 1.

(ii) For each δ > 0, define Ωδ = {x ∈ Ω : dist(x, ∂+Ω ∪ ∂0Ω) > δ}.
Let g ∈ C(∂Ω). Then there exists a constant C = C(δ) such that
|u(x, y) − u0(x, y)| ≤ Cε for all (x, y) ∈ Ωδ.

Proof. The proof of (i) is similar to the proof of Lemma 3.3.
The hypothesis of (ii) ensures that there are no interior layers. The proof

can be found in Goering, Felgenhauer, Lube, Roos and Tobiska (1983).

Let ‖ · ‖k and | · |k denote the usual norm and seminorm on the Sobolev
space Hk(Ω) for all nonnegative integers k. In particular ‖ · ‖0 = ‖ · ‖L2(Ω).

The presence of layers in u means that one does not have ‖u‖k ≤ C for
any k ≥ 1. Even in one dimension, the Hk norm of the function e−(1−x)/ε

is easily seen to be O
(

ε−k+1/2
)

, and exponential layers in two-dimensional
problems have a similar magnitude. This observation motivates the follow-
ing definition of a weighted energy norm that is commonly used in finite
element analyses of convection-diffusion problems: for all w ∈ H1(Ω), set

‖w‖1,ε =
√

ε|w|21 + ‖w‖2
0.

Then typically ‖u‖1,ε ≤ C, uniformly in ε.

Lemma 7.2. Let u be the solution of (6.1). Assume that b − (div a)/2 ≥
C5 > 0 on Ω̄ for some constant C5. Assume also that Ω is convex or has
smooth boundary. Then there exists a constant C such that

ε3/2|u|2 + ε1/2|u|1 + ‖u‖0 ≤ ε3/2|u|2 +
√

2 ‖u‖1,ε ≤ C.

Proof. Let G be the solution of the problem ∆G = 0 on Ω, G = g on
∂Ω. Then the hypotheses on the domain Ω ensure that ‖G‖2 ≤ C by a
classical inequality (see, e.g., Gilbarg and Trudinger (2001)). Subtract G
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from u to reduce the problem to the case of homogeneous Dirichlet boundary
conditions. Now use a standard energy norm argument: multiply Lu = f
by u then integrate by parts, obtaining

ε|u|21 +

∫

Ω

(

b − 1
2 div a

)

u2 =

∫

Ω
fu ≤ ‖f‖0‖u‖0 ≤ 1

2C5
‖f‖2

0 +
C5

2
‖u‖2

0

and ‖u‖1,ε ≤ C follows.
The PDE (6.1) and this inequality now yield

ε‖∆u‖0 ≤ C(|u|1 + ‖u‖0 + ‖f‖0) ≤ C(ε−1/2 + 1) ≤ Cε−1/2,

so ε3/2‖∆u‖0 ≤ C. But the classical inequality |u|2 ≤ C(‖∆u‖0 + ‖u‖0)
holds true (Gilbarg and Trudinger 2001), and we get ε3/2|u|2 ≤ C.

Remark 7.3. Analogously to Remark 3.2, if (7.1) holds true then one can
assume without loss of generality that b−(div a)/2 ≥ C5 > 0 on Ω̄ also holds
true.

We now give some idea of the behaviour of derivatives of the solution u of
(6.1) near exponential boundary layers and corners. Suppose that Ω is the
unit square and the differential operator is as in Example 6.3, so that (7.1)
holds true. Then the sides x = 1 and y = 1 form the outflow boundary ∂+Ω.
Assuming that no extra complications such as interior layers are present,
near x = 1 one expects the solution u to satisfy the bound

∣

∣

∣

∣

∂i+ju(x, y)

∂ix∂jy

∣

∣

∣

∣

≤ C
(

1 + ε−ie−(1−x)/ε
)

, (7.3)

while near y = 1 one expects
∣

∣

∣

∣

∂i+ju(x, y)

∂ix∂jy

∣

∣

∣

∣

≤ C
(

1 + ε−je−2(1−y)/ε
)

. (7.4)

Close to the corner (1,1) there will be an outflow corner layer , which is like
a product of exponential boundary layers, and satisfies the bound

∣

∣

∣

∣

∂i+ju(x, y)

∂ix∂jy

∣

∣

∣

∣

≤ C
(

1 + ε−(i+j)e−(1−x)/εe−2(1−y)/ε
)

. (7.5)

Despite the extra negative powers of ε in (7.5), corner layers of this type
rarely cause difficulty for numerical methods because they decay so rapidly
as one moves away from the corner.

A rigorous proof of bounds such as (7.3)–(7.5) is a delicate and lengthy
matter. Such a proof is given by Linß and Stynes (2001a) for problems like
the one under discussion, but with the extra assumptions that the Dirichlet
boundary condition g(x, y) is a continuous function and that a sufficient
number of compatibility conditions hold true at the corners of Ω̄.
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Compatibility conditions are relationships between the data of the prob-
lem and the differential operator that ensure that derivatives of u up to a
desired order are continuous on Ω̄. They arise only at corners and are not
caused by the singularly perturbed nature of the problem. Grisvard (1985)
provides a general exposition of compatibility conditions for elliptic oper-
ators on polygonal domains and Han and Kellogg (1990) write down the
precise form that they take when applied to convection-diffusion problems
posed on the unit square.

If compatibility conditions beyond a certain order are not satisfied at
a corner of a domain, then certain derivatives of that order and higher
orders must blow up as one approaches this corner. Kellogg and Stynes
(2005) derive bounds on the derivatives of the solution of a generalization
of Example 6.1 in terms of the number of compatibility conditions that are
satisfied at each corner. Near x = 1, but away from corners, we have (7.3).
Near the characteristic boundary y = 1, we find that

∣

∣

∣

∣

∂i+ju(x, y)

∂ix∂jy

∣

∣

∣

∣

≤ C
[

1 + (
√

ε )−je−2(1−y)/
√

ε
]

provided we stay away from corners. Near the corners, singularities in the
derivatives begin to appear; we do not give the details here.

The data of Example 6.3 are not fully compatible at the corner (1,1) with
the differential operator L. This incompatibility will cause singularities in
the derivatives of u at (1,1). The interaction between these singularities and
the exponential and corner layers is not yet fully understood. That is, we
are currently unable to write down reliable sharp pointwise bounds on the
derivatives of u near the point (1,1), but one expects that sharp bounds are
at least as bad as (7.5) and will blow up as (x, y) approaches (1, 1).

It is in general difficult to derive bounds on derivatives of solutions of
convection-diffusion problems inside characteristic boundary and interior
layers. Although such bounds are of great interest to numerical analysts, few
rigorous results appear in the literature. Kellogg and Stynes (2005) provide
pointwise bounds for characteristic boundary layers. In a subsequent paper
(Kellogg and Stynes 2004) they consider a convection-diffusion problem in
a half-plane with a discontinuity in an arbitrary specified derivative of the
boundary data and derive pointwise bounds on derivatives of the solution,
including the behaviour along the interior layer emanating from the point
of discontinuity.

Dörfler (1999) gives bounds on u and its derivatives in various norms (both
isotropic and anisotropic) and for a variety of convection-diffusion problems
on bounded domains. Shishkin (1990) contains pointwise bounds on de-
rivatives of u for many variants of (6.1) but the arguments are presented
in a very concise style and it is difficult to ascertain the precise assumptions
made.
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8. General comments on numerical methods

Numerical methods (such as central differencing on equidistant meshes) that
contain no mechanism for stabilizing solutions in exponential layers will
usually have wild oscillations in their computed solutions on much of Ω, like
in Section 4. As we shall see, this problem can be handled by modifying
the approximation of the convective terms (e.g., using some form of finite
difference upwinding or special choices of finite element trial and test spaces)
or by modifying the mesh (e.g., a two-dimensional Shishkin mesh). When
this is done correctly, one can compute accurate solutions inside these layers.

Characteristic layers, on the other hand, differ in both respects:

• if the method has no stabilizing mechanism specifically designed to
address characteristic layers, then the layer will induce small oscilla-
tions in the computed solution, but these oscillations usually appear
only inside and near the characteristic layer, so the solution can still
be computed accurately on the rest of Ω;

• it is often difficult – at least in the case of interior layers – to compute
accurate solutions inside characteristic layers.

Thus one could use some form of upwinding (i.e., some discrete approx-
imation of a.∇u that is skewed away from the outflow boundary) to stabilize
the method for exponential layers, combined with some heuristic mesh re-
finement near characteristic layers. Whether or not the mesh refinement
yields an accurate solution inside the characteristic layers, nevertheless the
solution elsewhere will be accurate.

The following pair of examples are related to our observation that one can
to a certain extent neglect characteristic layers but not exponential layers.

Consider again Example 6.3 but with g(x, y) ≡ 1. Then the solution
u(x, y) has exponential boundary layers along x = 1 and y = 1. The
reduced solution u0(x, y) will of course ignore these layers, and we find that
‖u − u0‖1,ε = O(1).

On the other hand the solution u of Example 6.1 has two characteristic
layers and one exponential layer. Schieweck (1986) proves that if one sets
v(x, y) = u0(x, y) − u0(1, y)e−(1−x)/ε (this is the reduced solution plus an
appropriate exponential layer term, so it ignores only the parabolic layers),
then ‖u − v‖1,ε ≤ Cε1/4.

Nevertheless, in some applications characteristic layers cannot be neg-
lected.

9. Finite difference methods in two dimensions

Assume that Ω is the unit square and the mesh {(xi, yj)} is rectangular
and equidistant in each coordinate direction: xi = ih and yj = jk for
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Figure 9.1. Mesh points and line
indicating nearby interior layer.

i = 0, . . . , N and j = 0, . . . , M with h := 1/N and k := 1/M . We use a
standard approximation of the second-order derivatives:

uxx(xi, yj) ≈
uN

i+1,j − 2uN
ij + uN

i−1,j

h2
, (9.1)

uyy(xi, yj) ≈
uN

i,j+1 − 2uN
ij + uN

i,j−1

k2
,

where uN
ij is the computed solution at each mesh point (xi, yj).

As for one-dimensional problems, approximating the first-order derivat-
ives in (6.1) by central differences

ux(xi, yj) ≈
uN

i+1,j − uN
i−1,j

2h
and uy(xi, yj) ≈

uN
i,j+1 − uN

i,j−1

2k

leads to an unstable method. Instead one can use simple upwinding,

ux(xi, yj) ≈
uN

i,j − uN
i−1,j

h
and uy(xi, yj) ≈

uN
i,j − uN

i,j−1

k
,

and this yields an M -matrix. Combining this with (9.1) and the approxim-
ation u(xi, yj) ≈ uN

ij for the zero-order term in (6.1), the resulting method
is stable but we expect from our experience with ODEs that it will smear
exponential boundary layers.

In fact, one can foresee heuristically that this method will also smear in-
terior layers. In Figure 9.1, the value of u(xi, yj) depends strongly on the
u values along the upstream portion of the subcharacteristic that passes
through (xi, yj) – this is a line through (xi, yj) parallel to the line drawn
– but simple upwinding makes u(xi, yj) depend on u(xi, yj−1), which intro-
duces inaccuracies because the value of u(xi, yj) has little to do with the
values of u on the other side of the interior layer indicated by the line in
Figure 9.1.
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A difference scheme on a family of arbitrary rectangular meshes of (N+1)2

points (we take the same number of mesh points in each coordinate direction
for simplicity) is said to be robust or uniformly convergent (with respect to

ε) of order β > 0 in the discrete L∞ norm if its solution {uN
ij } satisfies

|uij − uN
ij | ≤ CN−β for i, j = 0, . . . , N

and all sufficiently small H, independently of ε. Here we take N + 1 mesh
points in each coordinate direction for simplicity, H is the mesh diameter,
β is some positive constant that is independent of the mesh and of ε, and
we write uij instead of u(xi, yj) (we shall do likewise for all other functions
in C(Ω̄)).

For uniform convergence on an equidistant mesh, an analogue of The-
orem 4.8 shows that once again the coefficients in the scheme must have a
certain exponential character (Roos et al. 1996, p. 194). One can define a
five-point scheme that is a two-dimensional analogue of the Il’in scheme of
Example 4.9. When the data of (6.1) are smooth and some compatibility
conditions are satisfied at the corners of Ω, this scheme can be proved to
achieve uniform convergence of order β, where β is almost 1/2, in the dis-
crete L∞ norm (Roos et al. 1996, p. 195). Nevertheless this scheme, which
is a form of upwinding, smears interior layers quite badly and is rarely used.

Continuing in the footsteps of our earlier sections, we now consider a two-
dimensional Shishkin mesh for a problem on the unit square that satisfies
(7.1) and consequently has exponential boundary layers along x = 1 and
y = 1. Let N , an even integer, be the number of mesh intervals in each
coordinate direction. Define the transition points on the x- and y-axes
to be 1 − λx and 1 − λy respectively, where λx = (2ε/α1) lnN and λy =
(2ε/α2) lnN . The fine and coarse mesh regions on the coordinate axes each
contain N/2 mesh intervals. See Figure 9.2 for the mesh with N = 8.

One can define simple upwinding on non-equidistant meshes similarly to
the formulas of Section 5. Writing uN

ij for the solution computed using this
method on the Shishkin mesh, then under compatibility assumptions from
Linß and Stynes (2001a) guaranteeing that the solution u can be decom-
posed as a sum of the reduced solution, an exponential layer at x = 1, an
exponential layer at y = 1 and a corner layer at (1,1), where these layers
satisfy bounds similar to (7.3)–(7.5), an analysis similar to that of Section 5
shows that

|uij − uN
ij | ≤ CN−1 lnN for all i, j.

That is, we get almost first-order uniform convergence in the discrete L∞

norm.
If we modify this scheme by using central differencing instead of upwind-

ing wherever the Shishkin mesh is fine in the relevant coordinate direction,
then the M -matrix property is retained and a variant of the upwind analysis
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(0, 0) 1 − λx

1 − λy

Figure 9.2. Shishkin mesh with N = 8.

yields (Linß and Stynes 1999) the improved bound

|uij − uN,hybrid
ij | ≤ CN−1 for all i, j,

where uN,hybrid
ij is the solution computed by this hybrid scheme.

Kopteva (2003) shows, under some extra compatibility assumptions at
the corners, that one iteration of Richardson extrapolation applied to the
simple upwind solution uN

ij on the Shishkin mesh yields a solution vN
ij for

which

|uij − vN
ij | ≤ CN−2 ln2 N for all i, j.

Approximation of the first-order derivatives of u is also discussed in this
paper.

Remark 9.1. (Shishkin’s obstacle theorem) The above convergence
results are all proved under hypotheses that exclude characteristic layers.
The difficulty of accurately approximating characteristic boundary layers is
underlined by a remarkable result of Shishkin (1989): suppose that one has
a problem whose solution has a characteristic boundary layer. Suppose also
that one applies any difference scheme on an equidistant mesh whose coeffi-
cients are drawn from a fixed class of functions (e.g., the Il’in scheme, whose
coefficients are all exponentials and polynomials; the point is that one is for-
bidden to vary the difference scheme by choosing the type of coefficients to
correspond exactly to the precise nature of each new set of boundary data).
Then this scheme cannot yield uniform convergence of any positive order in

the discrete L∞ norm inside the characteristic boundary layer for all smooth

and compatible boundary data g. The essential reason for this negative res-
ult is that at each point (x, y) near ∂0Ω a characteristic boundary layer
depends on all the data along that connected component of ∂0Ω; this is
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1 − λx(0, 0)

1 − λy2

λy1

Figure 9.3. Shishkin mesh for Example 6.1
with N = 16.

quite unlike an exponential boundary layer, whose behaviour at (x, y) near
∂+Ω depends only on the difference between the reduced solution u0 and the
boundary data at the nearest boundary point – a much simpler situation.
A consequence of Shishkin’s result is that special schemes on equidistant
meshes are unsatisfactory inside characteristic boundary layers; instead, we
must use meshes that are adapted either a priori or a posteriori .

For a problem on the unit square (such as Example 6.1) that has an
exponential boundary layer at x = 1 and characteristic boundary layers at
y = 0 and y = 1, a suitable Shishkin mesh is constructed as follows: use an
x-axis transition point exactly as in Figure 9.2. Place y-axis transition
points at λy1 and 1−λy2 where each λyk is O

(

ε1/2 lnN
)

, then use N/4 equi-
distant mesh intervals in each of [0, λy1] and [1−λy2, 1] and N/2 equidistant
mesh intervals in [λy1, 1− λy2]. See Figure 9.3. Then for simple upwinding,
Shishkin (1990) shows that under certain fairly strong hypotheses on the
smoothness and compatibility of the data of the problem, simple upwinding
yields

|uij − uN
ij | ≤ CN−1 lnN for all i, j,

where uN
ij is the computed solution.

A large collection of numerical computations on Shishkin meshes for vari-
ous problems can be found in Farrell et al. (2000). While the assembly
of Shishkin meshes for boundary layers along straight portions of ∂Ω is
straightforward once the asymptotic nature of the layer has been ascer-
tained, for general (curved) interior layers there are practical difficulties in
the construction of these meshes and the only examples in the literature are
for problems like Example 6.4, where the layer has a certain symmetry. Nev-
ertheless one can achieve satisfactory visual results with heuristic approxim-
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ations of Shishkin meshes in such situations; see Madden and Stynes (1997).
Shishkin’s second doctoral thesis (Shishkin 1990) contains a wealth of the-
oretical results for finite differences applied on piecewise uniform meshes for
many convection-diffusion problems. It is at present being translated into
English, but is written in an extremely condensed style.

Remark 9.2. (Defect correction method) This technique seeks to gen-
erate a useful higher-order scheme by combining a stable low-order scheme
with a higher-order but unstable scheme.

Consider an arbitrary rectangular mesh. Compute an initial approxima-
tion ûN using simple upwinding: LN

upû
N = fN . Obtain the ‘defect’ σN by

means of the formally higher-order central difference scheme LN
c : set σN =

fN − LN
c ûN . Compute the defect correction δN by solving LN

upδ
N = σN .

Form the final solution uN := ûN + δN .
This method avoids instability by solving only discrete systems that in-

volve the upwind operator LN
up, yet aims to attain the higher-order con-

vergence associated with the operator LN
c . The idea can be placed in a

more general setting and has been applied to many problems unrelated
to convection-diffusion (Bohmer and Rannacher 1984). For convection-
diffusion the only satisfactory analysis of the method, which shows that
it does indeed achieve second-order convergence on a Shishkin mesh, is in
Fröhner, Linß and Roos (2001) where a one-dimensional problem is treated.
Defect correction is related to Richardson extrapolation, and to obtain a
rigorous proof of its validity in two dimensions on a Shishkin mesh like
that of Figure 9.2 would require, e.g., some extension of the delicate ana-
lysis in Kopteva (2003). Nevertheless numerical results for the method are
encouraging (see Remark 10.2).

Finally, we point out that when one no longer assumes hypotheses such
as a(·, ·) > (0, 0), then although simple upwinding remains stable (i.e., the
computed solution is free of non-physical oscillations), it can give danger-
ously misleading results. Brandt and Yavneh (1991) give an example of
linearized recirculating flow in an annulus where the subcharacteristics are
circles and, except near the boundary of the domain, the solution computed
by a version of simple upwinding is O(1) distant from the true solution!

10. Finite element methods

If one attempts to solve a convection-diffusion problem by means of a stand-
ard Galerkin finite element method with linear or bilinear elements on an
equidistant mesh, then a typical computed solution will display large os-
cillations. This is analogous to our experience in Section 9 with central
differencing. Thus some mechanism is needed to stabilize a FEM: a special
choice of trial or test functions, or a special mesh, or a modification of the
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standard bilinear form, or a combination of these devices. In the subsections
that follow we discuss each in turn.

Throughout this section we shall assume (cf. Remark 7.3) that

b(x, y) − div a(x, y)

2
≥ C5 > 0 on Ω̄ for some constant C5. (10.1)

For convenience also assume that u ≡ 0 on ∂Ω.

10.1. L∗-splines

We did not discuss finite element methods for one-dimensional convection-
diffusion problems such as (3.12) since often they are merely an alternative
way of generating finite difference schemes.

For example, one can generate the Il’in scheme of Example 4.9 by a finite
element method on the same equidistant mesh. It is a Petrov–Galerkin
FEM, that is, the trial space SN and test space TN are not identical, unlike
standard (Bubnov–)Galerkin methods. One takes SN to be the standard
space of piecewise linear functions on the mesh xi = i/N , for i = 0, 1, . . . , N ,
that vanish at x = 0, 1 to satisfy the boundary conditions in (3.12). Recall
that the differential equation in (3.12) is Lu(x) := −εu′′(x) + a(x)u′(x) +
b(x)u(x) = f(x), with a(·) > 0. Define the test space TN to be the space of
approximate L∗-splines spanned by {ψi}N−1

i=1 , where

L̄∗(ψi)(x) := −εψ′′
i (x) − ā(x)ψ′

i(x) + b̄(x)ψi(x) = 0 (10.2)

on each subinterval (xj−1, xj)

and ψi(xj) = δij , the discrete Kronecker delta. Here ā is some approxim-
ation of a(x) that is constant on each mesh subinterval, and b and f are
approximated by b̄ and f̄ in a similar way. As usual in FEMs, the com-
puted solution uN (x) ∈ SN is generated by a weak form of the differential
equation:

∫ 1

0

[

ε(uN )′(x)ψ′
i(x) + ā(x)(uN )′(x)ψi(x) + b̄uN (x)ψi(x)

]

dx

=

∫ 1

0
f̄(x)ψi(x) dx for i = 1, . . . , N − 1.

If one defines ā by the quadrature rule
∫ 1

0
ā(x)(uN )′(x)ψi(x) dx = ai

∫ 1

0
(uN )′(x)ψi(x) dx,

with similar definitions for b̄ and f̄ , then one obtains the Il’in scheme. The
alternative choice

ā
∣

∣

∣

(xj−i,xj)
=

aj−1 + aj

2
for each j
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(with similar definitions for b̄ and f̄) yields the El Mistikawy–Werle scheme
of Section 4.

Both of these are successful schemes, and the only special construction
we made when generating them in a FEM context was to use L∗-splines.
Why do L∗-splines make such good test functions?

The explanation is to be found by considering Green’s functions for the
differential operator L. For each mesh point xi ∈ (0, 1) let G(·, xi) denote
the Green’s function associated with that point, that is,

L∗G(ξ, xi) = δ(ξ − xi) for 0 < ξ < 1, G(0, xi) = G(1, xi) = 0,

where we define

L∗G(ξ, xi) := −εGξξ(ξ, xi) −
(

a(ξ)G(ξ, xi)
)

ξ
+ b(ξ)G(ξ, xi).

Then

ui =

∫ 1

0
f(ξ)G(ξ, xi) dξ

=

∫ 1

0
(Lu)(ξ)G(ξ, xi) dξ

=

∫ 1

0

[

εu′(ξ))Gξ(ξ, xi) + a(x)u′(ξ)G(ξ, xi) + bu(ξ)G(ξ, xi)
]

dξ.

Note both the resemblance between this identity and the weak form of the
differential equation that was used above to generate the FEM and the
similarity between the definitions of G and ψi. The key idea of this FEM
was to choose the ψi in such a way that the test space TN was capable of
producing a decent approximation of the Green’s function, and this property
can be exploited in the analysis of the method.

The Green’s function exhibits layers at ξ = 0 and at ξ = xi; on each
subinterval [0, xi] and [xi, 1] these layers occur at the left-hand end, unlike
the layer in u(x) at x = 1, because of the negative coefficient −a(ξ) in the
convective term appearing in the definition of L∗. See Figure 10.1.

Remark 10.1. When piecewise linears or bilinears are used as the trial
space for convection-diffusion problems in one or two dimensions, useful
numerical methods on general meshes are based on some test space that
is constructed to approximate the Green’s function of the continuous oper-
ator. This Green’s function is skewed away from the outflow boundary; see
Morton (1996) for a discussion of its properties in two dimensions.

Alternatively, one can shift the work from the test space to the trial space
by using trial functions φ that are approximate L-splines (i.e., satisfy some
approximate version of Lφ = 0), together with some standard space of
test functions such as piecewise linears. The relationship between this dual
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Figure 10.1. Green’s function G(ξ, xi) with a ≡ 1,
b ≡ 0, xi = 0.6 and ε = 0.05.

approach and the use of L∗-spline test functions is discussed at length in
Roos et al. (1996, §I.2.2.3).

Some authors have generalized the L∗-splines of (10.2) to two dimensions
by taking their tensor product on rectangular grids, but this method is ap-
plicable only on domains whose boundary comprises straight-line segments
each of which is parallel to one of the coordinate axes, and so negates one of
the main advantages of finite element methods over finite differences. Con-
sequently we do not discuss this approach here but refer the reader to Roos
et al. (1996, §II.3.4).

A more useful generalization that is genuinely two-dimensional is found in
Sacco, Gatti and Gotusso (1999): to solve (6.1) on an arbitrary triangular
mesh one uses a trial space with local basis

1, e(ā1x+ā2y)/ε, ā1y − ā2x,

where (ā1, ā2) is a piecewise-constant approximation of a = (a1, a2). Here
the functions 1 and eā1x+ā2y come from the functions that appear in ap-
proximate L-splines for the corresponding one-dimensional problem (3.12),
but the third function ā1y − ā2x is new. Observe that all three functions
lie in the null space of the operator −ε∆(·) + ā1(·)x + ā2(·)y, i.e., they are
approximate L-splines. Piecewise linears are used in the test space. It is
shown in Sacco and Stynes (1998) that this method is essentially equivalent
to the unusual exponentially upwinded scheme used in PLTMG.

10.2. Shishkin meshes

FEMs can of course be implemented on Shishkin meshes like those of Fig-
ures 9.2 and 9.3 (the mesh rectangles can be bisected into triangles to permit
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the use of, e.g., a piecewise linear FEM). Note that some mesh rectangles
have a high aspect ratio, i.e., their length greatly exceeds their width. To
analyse such methods, the highly anisotropic nature of the mesh necessit-
ates the use of sharp anisotropic interpolation estimates like those of Apel
and Dobrowolski (1992) and Apel (1999), which we now describe.

Suppose that each element τ (triangle or rectangle) of the mesh is con-
tained in a rectangle with side lengths (hx, hy) and contains a rectangle
with side lengths (Chx, Chy) for some fixed constant C > 0. In the case of
triangles, assume also a maximum angle condition: the interior angles are
bounded away from π. (A triangular Shishkin mesh satisfies this maximum
angle condition.)

Let v ∈ H2(τ). Let vI denote the nodal interpolant (linear or bilinear) of
v. Write ‖ · ‖0,τ for the norm in L2(τ). Then

‖v − vI‖2
0,τ ≤ C

∑

|α|=2

h2α‖Dαv‖2
0,τ ,

‖∂x(v − vI)‖2
0,τ ≤ C

∑

|α|=1

h2α‖Dα∂xv‖2
0,τ ,

‖∂y(v − vI)‖2
0,τ ≤ C

∑

|α|=1

h2α‖Dα∂yv‖2
0,τ .

Here α is the multi-index (α1, α2), |α| = α1 + α2, hα = hα1
x hα2

y , and

Dα =
∂α1

∂xα1

∂α2

∂yα2
.

Bounds of this type are useful on Shishkin meshes because of the very small
mesh width in precisely the coordinate direction whose derivative is large,
and because no term vyy appears in the bound on ‖∂x(v−vI)‖0,τ . Standard
isotropic interpolation error estimates use only the diameter of the element
and thereby lose the benefit of the Shishkin mesh in the analysis of inter-
polation error.

With these estimates, Dobrowolski and Roos (1997) show that if Ω is
the unit square and the solution u of (6.1) can be written as the sum of
a reduced solution and exponential boundary and corner layers, then for
piecewise linear or bilinear interpolation on a Shishkin mesh,

‖u − uI‖L∞(Ω) ≤ CN−2 ln2 N and ‖u − uI‖0 ≤ CN−2 + C
√

εN−2 ln2 N

so

‖u−uI‖0 ≤ CN−2 when
√

ε ≤ C ln−2 N, and ‖u−uI‖1,ε ≤ CN−1 lnN.

These bounds give us some idea of what convergence rates one can hope for
when devising FEMs for convection-diffusion problems on Shishkin meshes.
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Define the bilinear form

B(v, w) = (ε∇v,∇w) + (a.∇v, w) + (bv, w) for all v, w ∈ H1(Ω), (10.3)

where (·, ·) denotes the L2(Ω) inner product. Then (10.1) implies that

B(v, v) ≥ min{1, C5}‖v‖2
1,ε for all v ∈ H1

0 (Ω). (10.4)

Remark 10.2. Linß and Stynes (2001b) perform numerical experiments
that compare several methods on the same Shishkin mesh for a test prob-
lem on the unit square that has exponential outflow layers along x = 1 and
y = 1. The methods considered are central differencing, simple upwinding,
the hybrid difference scheme of Linß and Stynes (1999), defect correction
(see Remark 9.2), linear and bilinear Galerkin FEMs, and linear and bi-
linear streamline-diffusion FEMs (which we will discuss in Section 10.3).
Graphs of the computed solutions, errors and convergence rates in the dis-
crete L∞(Ω) norm are given, and known theoretical convergence results for
the various methods are listed. It is concluded that, taking into account
any difficulties that arise in solving the discrete linear systems, the methods
that performed best for this problem are the defect correction method and
the two streamline-diffusion FEMs, and that inside the layers bilinears yield
more accuracy than linears.

10.3. The streamline-diffusion FEM

With linear or bilinear Galerkin methods, one has coercivity only with re-
spect to the norm ‖ · ‖1,ε as shown in (10.4). This alone is insufficient to
guarantee the stability of the method: numerical experiments on equidistant
meshes will produce large oscillations like those seen for central differencing.
Thus several finite element practitioners have devised FEMs that are coer-
cive with respect to a stronger norm. Of these, the most commonly used
is the streamline-diffusion FEM (SDFEM), which dates from 1979 (Hughes
and Brooks 1979); it is also called the streamline upwind Petrov–Galerkin

(SUPG) method.
Given a partition ΩN of Ω, let SN be a conforming space of piecewise

polynomials of degree k ≥ 1 defined on ΩN . Define the SDFEM solution
uSD ∈ SN by

BSD(uSD, wN )

:= B(uSD, wN ) +
∑

τ∈ΩN

δτ (−ε∆uSD + a.∇uSD + buSD, a.∇wN )τ

= (f, wN ) +
∑

τ∈ΩN

δτ (f, a.∇wN )τ for all wN ∈ Sn. (10.5)

Here B(·, ·) is the standard bilinear form defined in (10.3), (·, ·)τ is the L2(τ)
inner product, and δτ is a nonnegative user-chosen piecewise constant that
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will be used to stabilize the method (if δτ = 0 for all τ ∈ ΩN then we
return to the standard Galerkin method). The term

∑

τ∈ΩN δτ (f, a.∇wN ) is
included in the right-hand side of (10.5) to give the standard FEM property
of Galerkin orthogonality :

BSD(u − uSD, wN ) = 0 for all wN ∈ SN . (10.6)

In the particular case when SN comprises piecewise linears and b ≡ 0,
the bilinear form simplifies to

BSD(uSD, wN ) = (ε∇uSD,∇wN ) + (a.∇uSD, wN )

+
∑

τ∈ΩN

δτ (a.∇uSD, a.∇wN )τ ,

which is the same as the standard Galerkin bilinear form B(·, ·) associ-
ated with the differential operator −ε∆u − δ|a|2uaa + a.∇u, where δ is a
piecewise-constant function and ua denotes the directional derivative in the
subcharacteristic direction. That is, we have added artificial diffusion to the
PDE, but only in the direction of the subcharacteristics, which for station-
ary problems are the same as the so-called streamlines of the differential
operator. This is the explanation of the name SDFEM.

The SDFEM can be regarded as a Petrov–Galerkin method with trial
space SN and test space {wN +

∑

τ∈ΩN δτa.∇wN : wN ∈ SN}, i.e., the
test functions are obtained by ‘upwinding’ the trial functions along the
subcharacteristics. For this reason it is also known as the SUPG method.

Assume that the mesh is quasi-uniform, so that (Brenner and Scott 2002,
§4.4) on each element τ ∈ ΩN one has the standard interpolation property

|u − uI |m,τ ≤ Chk+1−m
τ |u|k+1,τ for m = 0, 1, 2 (10.7)

and the local inverse inequality

‖∆wN‖0,τ ≤ Cinvh
−1
τ |wN |1,τ for all wN ∈ SN , (10.8)

where the | · |ℓ,τ are local Sobolev seminorms on the element τ , the norm on
L2(τ) is ‖ · ‖0,τ , and hτ denotes the diameter of τ .

Define a norm that is stronger than ‖ · ‖1,ε and natural for the analysis of
the SDFEM: for each v ∈ H1(Ω), set

‖v‖SD =

(

ε|v|21 +
∑

τ∈ΩN

δτ‖a.∇v‖2
0,τ + C5‖v‖2

0

)1/2

.

Lemma 10.3. Suppose that the SDFEM parameter δτ satisfies

0 ≤ δτ ≤ 1

2
min

{

C5

‖b‖2
L∞(τ)

,
h2

τ

εC2
inv

}

for each τ ∈ ΩN . (10.9)

Then the bilinear form BSD(·, ·) is coercive with respect to ‖ · ‖SD over
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SN × SN , that is,

BSD(wN , wN ) ≥ 1

2
‖wN‖2

SD for all wN ∈ ΩN .

Proof. For each wN ∈ ΩN , we get easily

BSD(wN , wN ) ≥ ε|wN |21 + C5‖wN‖2
0 +

∑

τ∈ΩN

δτ‖a.∇wN‖2
0,τ

+
∑

τ∈ΩN

δτ (−ε∆wN + bwN , a.∇wN )τ . (10.10)

Now the inequality st ≤ s2 + t2/4 for s and t ≥ 0, inequality (10.8) and the
hypothesis on δτ yield

∣

∣

∣

∣

∣

∑

τ∈ΩN

δτ (−ε∆wN + bwN , a.∇wN )τ

∣

∣

∣

∣

∣

≤
∑

τ∈ΩN

[

ε2δτ‖∆wN‖2
0,τ + δτ‖b‖2

L∞(τ)‖wN‖2
0,τ +

1

2
δτ‖a.∇wN‖2

0,τ

]

≤ 1

2

[

ε|wN |21 + C5‖wN‖2
0 +

∑

τ∈ΩN

δτ‖a.∇wN‖2
0,τ

]

.

Applying this bound in (10.10), the lemma is proved.

One can exploit this result to derive an error estimate in a fairly standard
way. Let uI ∈ SN denote the nodal interpolant of u. Then, under the
hypothesis of Lemma 10.3,

‖uI − uSD‖2
SD ≤ 2 BSD(uI − uSD, uI − uSD) = 2BSD(uI − u, uI − uSD),

by the Galerkin orthogonality property (10.6). Applying Cauchy–Schwarz-
type inequalities to the right-hand side here and invoking (10.7) and εδτ ≤
Ch2

τ from (10.9), we arrive at (Roos et al. 1996, p. 232)

‖uI − uSD‖SD ≤ Chk

[

∑

τ

(ε + δτ + δ−1
τ h2

τ + h2
τ )|u|2k+1,τ

]1/2

,

where h := maxτ hτ is the mesh diameter. In order to extract the best pos-
sible rate of convergence from this inequality while honouring the constraint
on δτ in (10.9), set

δτ =

{

δ0hτ for Peτ > 1,

δ1h
2
τ/ε for Peτ ≤ 1,

(10.11)

where we define the mesh Péclet number Peτ := ‖a‖L∞(τ)hτ/ε. Here δ0 and
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δ1 are user-chosen positive constants. The more important case Peτ > 1 is
usually referred to as the convection-dominated case.

Remark 10.4. No precise general formula for an ‘optimal’ (in some sense)
value of the SDFEM parameter δτ is known; the choice (10.11) seems to
be the best statement that one can make. There has been much research
into this question. For discussions of how to choose δτ see, e.g., Akin and
Tezduyar (2004), Brezzi and Russo (1994), Fischer, Ramage, Silvester and
Wathen (1999), Houston and Süli (2001), Madden and Stynes (1996) and
Roos et al. (1996).

The above analysis leads to the following bound (Roos et al. 1996, p. 233).

Theorem 10.5. Let each δτ be chosen according to (10.11) while satis-
fying the hypotheses of Lemma 10.3. Then there exists a constant C such
that

‖u − uSD‖SD ≤ ‖u − uI‖SD + ‖uI − uSD‖SD ≤ C(ε1/2 + h1/2)hk|u|k+1,
(10.12)

where uN is the solution of the SDFEM method (10.5).

In a very technical paper Sangalli (2003) shows that in the one-dimen-
sional case (3.12), on an equidistant grid the SDFEM yields a solution that
is quasi-optimal with respect to a certain interpolated norm that is roughly
similar to our norm ‖ · ‖SD.

When the mesh is coarse everywhere, so we are in the convection-dom-
inated case on all elements, then ε ≤ Chτ for all τ ∈ ΩN and the bound
(10.12) becomes

‖u − uSD‖SD ≤ Chk+1/2|u|k+1.

This implies that

‖u − uSD‖0 +

(

∑

τ∈ΩN

δτ‖a.∇(u − uSD)‖2
0,τ

)1/2

≤ Chk+1/2|u|k+1, (10.13)

Here the term |u|k+1 is typically O
(

ǫ−k−1/2
)

. In general this will dominate

the hk+1/2 term and consequently (10.13) does not imply that the error
u − uSD is small in some norm. Thus this estimate is of limited value.
Nevertheless one can choose some maximal subset Ω̂ of Ω that excludes all
layers, restrict the norms in (10.13) to Ω̂, then prove essentially the same
bounds again (in terms of the new norms) by means of cut-off functions
(Roos et al. 1996, §II.3.2.1).

Recalling that δτ = O(hτ ) in the convection-dominated case, we see that
in (10.13) the error bound for the streamline derivative a.∇u is of optimal
order, but the estimate of ‖u − uN‖0 is order 1/2 less than optimal. This
apparent loss of accuracy in the L2 norm has attracted much attention.
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Whether or not the bound on ‖u−uN‖0 was sharp remained unresolved for
many years until Zhou (1997) constructed a simple example for piecewise
linears on a special mesh where the SDFEM converged with order only
1.5. For bilinears the situation is different. (Recall the comments on the
numerical results for linears versus bilinears in Linß and Stynes (2001b).)
For the SDFEM on the unit square Ω, under the usual hypotheses that
u has only exponential boundary and corner layers, Stynes and Tobiska
(2003) prove convergence results on a Shishkin mesh that imply, inter alia,
‖u−uN‖0 ≤ CN−2 ln2 N . The fundamental difference between bilinears and
linears in the analysis is that for bilinears one has sharp interpolation error
identities (Lin 1991) that enable the analysis to be carried out separately on
each rectangle, while for triangles the corresponding identities require one
to combine neighbouring elements to obtain an optimal error bound and
this is not feasible on, e.g., a Shishkin mesh.

Remark 10.6. Lemma 10.3 implies an a priori estimate for the SDFEM
solution uSD:

‖uSD‖SD ≤ C

(

‖f‖2
0 +

∑

τ

δτ‖f‖2
0,T

)1/2

. (10.14)

Thus the method retains some control over the streamline derivative a.∇uSD

of the computed solution. In the more interesting convection-dominated
case, with δτ = δ0hτ , inequality (10.14) says essentially that, on a quasi-

uniform mesh, ‖a.∇uSD‖0,τ can be at most O(h
1/2
τ ). It is this property

that distinguishes the SDFEM from a standard Galerkin method, for whose
oscillatory solution uN one can have ‖a.∇uN‖0,τ = O(1), since the slope of
uN is locally O(h−1

τ ).
This enhanced stability in the subcharacteristic direction means that the

SDFEM can compute fairly satisfactory exponential layers in solutions of
convection-diffusion problems, provided that δτ is chosen carefully. Note
however that the method contains no mechanism for stabilization perpen-
dicular to the subcharacteristics, so along characteristic layers the computed
solution typically displays oscillations; as usual with such layers, these os-
cillations are confined to a fairly small neighbourhood of the layer.

Kopteva (2004) gives a detailed analysis of the accuracy of the SDFEM
inside characteristic layers.

Figure 10.2 shows a solution computed by the SDFEM for a problem with
an interior layer and two outflow exponential layers. The computed solution
has oscillations along the interior layer and at one of the outflow boundary
layers. In this example δτ is for simplicity set equal to the same value on
all triangles of the equidistant mesh, but this is not in general the best
approach. The same problem is solved again in Figure 10.3 but the com-
mon value of δτ has been increased judiciously to the value recommended
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Figure 10.2. SDFEM I: δτ is the same for all τ .
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Figure 10.3. SDFEM II: increased value for δτ .
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in Madden and Stynes (1996) to compute a sharp layer without oscillations
along x = 1; unfortunately the outflow layer at y = 1 is smeared since the
value of δτ is now larger than optimal for that layer. In line with the discus-
sion in Remark 10.6, the increase in δτ has had little effect on the computed
interior layer compared with the dramatic changes in the computed outflow
layers.

Remark 10.7. In order to reduce or remove any oscillations that appear
along characteristic layers, several authors have modified the SDFEM by
adding artificial crosswind diffusion to the PDE or even by introducing
nonlinear ‘shock-capturing’ terms into the SDFEM formulation. Expert
opinion is divided on the value of this approach; for contrasting views see
Shih and Elman (2000) and Knopp, Lube and Rapin (2002).

Remark 10.8. The SDFEM can of course be combined with a Shishkin
mesh, and this technique was used to compute u(x, y) in Figures 6.2, 6.3
and 6.5. In Figure 6.4 the SDFEM was also used but on an equidistant
mesh; one can see that the interior layer in this figure is less sharp.

10.4. Discontinuous Galerkin finite element method

Recently, the discontinuous Galerkin FEM (DGFEM) has attracted a great
deal of attention from many distinguished researchers. Like the SDFEM it
achieves stability by a judicious choice of bilinear form, but the details of
the construction are very different from Section 10.3.

Its name comes from its use of a standard piecewise polynomial trial
space that is not required to be continuous across element boundaries. This
local nature means the method is more readily parallelizable than (say) the
SDFEM, and clearly permits the use of polynomials of different degrees on
different elements, which can be exploited to gain increased accuracy when
the problem is quite smooth on only part of the domain – as is usually the
case with convection-diffusion problems. A drawback is the much larger
number of degrees of freedom compared with finite element spaces that lie
in C(Ω).

Methods of this type were first introduced in the 1970s and today there are
several prominent variants. Arnold, Brezzi, Cockburn and Marini (2001/02)
consider the problem −∆u = f on Ω with u = 0 on ∂Ω and show that nine
distinct versions of the DGFEM can be placed in the framework of a mixed-
method weak formulation. They go on to analyse the stability of these
methods, but this is of limited value in the context of convection-diffusion
problems where the Laplacian is multiplied by a small parameter. This
paper also gives an account of the historical development of DGFEMs that
includes methods specifically designed for convection-diffusion problems.

Given the diversity of methods described as DGFEMs, we shall not at-
tempt to give a thorough survey of this area. Instead we concentrate on one
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variant and the references appearing in this subsection will assist the reader
who wishes to broaden his or her knowledge of the DGFEM.

Consider the nonsymmetric interior penalty DGFEM (NIPD) from Hous-
ton, Schwab and Süli (2002); related methods appear in, e.g., Oden, Babuška
and Baumann (1998) and Rivière, Wheeler and Girault (2001).

Assume that Ω is polygonal. Let T be a partition of Ω into elements
κ (e.g., triangles or rectangles). Houston et al. (2002) permit up to one
hanging node for each κ, but for simplicity we shall assume that our partition
has no hanging nodes. Assume also that each κ ∈ T is an affine image
of a fixed master element κ̂, i.e., that κ = Fκ(κ̂) where κ̂ is either the
open unit simplex or the open unit square in R

2. For each nonnegative
integer k, let Pk(κ̂) denote the set of polynomials of total degree k on κ̂.
(If κ̂ is the unit square, one can also consider Qk(κ̂), the set of all tensor-
product polynomials on κ̂ of degree k in each coordinate direction.) For
each κ ∈ T write pκ for the local polynomial degree. Set p = {pκ : κ ∈ T }
and F = {Fκ : κ ∈ T } and define the finite element space

Sp(Ω, T ,F) = {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Rpκ(κ̂)},

where R is either P or Q.
For s = 0, 1 define the broken Sobolev spaces

Hs(Ω, T ) = {v ∈ L2(Ω) : v|κ ∈ Hs(κ) for all κ ∈ T }.

Let ∂κ denote the boundary of κ for each κ ∈ T . Define the inflow and
outflow parts of ∂κ by

∂−κ = {(x, y) ∈ ∂κ : a(x, y).µκ(x, y) < 0},
∂+κ = {(x, y) ∈ ∂κ : a(x, y).µκ(x, y) ≥ 0}

respectively, where µκ(x, y) denotes the outward-pointing unit normal to ∂κ
at (x, y) ∈ ∂κ.

Let v ∈ H1(Ω, T ). For each κ ∈ T , denote by v+
κ the inner trace of v|κ on

∂κ. If ∂−κ \ ∂Ω is nonempty, then for almost every point (x, y) ∈ ∂−κ \ ∂Ω
there exists a unique κ′ ∈ T (which depends on (x, y)) such that x ∈ ∂+κ′

and κ′ ∩ (∂−κ \ ∂Ω) has nonzero one-dimensional measure, and we define
the outer trace v−κ of v on ∂−κ \ ∂Ω relative to κ to be the inner trace v+

κ′

relative to κ′. Then define the jump of v across ∂−κ\∂Ω by ⌊v⌋κ = v+
κ −v−κ .

We shall drop the subscript κ from the above notation when it is clear
from the context what is intended.

Let Eint be the set of all open one-dimensional edges of the partition T
that lie in Ω. Set Γint = {x ∈ Ω : x ∈ e for some e ∈ Eint}. Numbering
the elements κ consecutively, for each e ∈ Eint there exist indices i and j
such that i > j and the elements κi and κj share the interface e. Define
the (element-numbering-dependent) jump of v ∈ H1(Ω, T ) across e and the



Convection-diffusion problems 499

mean value of v on e by

[v]e = v|∂κi∩e − v|∂κj∩e and 〈v〉e = 1
2

(

v|∂κi∩e + v|∂κj∩e

)

respectively. Furthermore, for each e ∈ Eint let ν denote the unit normal
vector pointing from κi to κj ; if e ⊂ ∂Ω, take ν = µ.

The bilinear form associated with the NIPD for (6.1a) with u ≡ 0 on
∂Ω is

BDG(v, w) =
∑

κ∈T

(

ε

∫

κ
∇v.∇w dx +

∫

κ
(a.∇v + bv)w dx

−
∫

∂−κ∩∂−Ω
(a.µ)v+w+ ds −

∫

∂−κ\∂Ω
(a.µκ)⌊v⌋w+ ds

)

+ ε

∫

∂Ω

(

v(∇w.µ) − (∇v.µ)w
)

ds +

∫

∂Ω
σvw ds

+ ε

∫

Γint

([v]〈∇w.ν〉 − 〈∇v.ν〉[w]) ds +

∫

Γint

σ[v][w] ds,

for all v, w ∈ H1(Ω, T ). Here σ, the user-chosen nonnegative discontinuity-

penalization parameter, is defined by

σ|e = σe for each e ∈ Eint ∪ ∂Ω.

Houston et al. (2002) choose σe = O(ε/he) where he is the length of edge e.
The NIPD method is then: find uDG ∈ Sp(Ω, T ,F) such that

B(uDG, wN ) =
∑

κ∈T

∫

κ
fwN dxdy for all wN ∈ Sp(Ω, T ,F). (10.15)

Existence and uniqueness of a solution to (10.15) are shown in Houston
et al. (2002) by combining results from earlier papers of these authors.

Assuming that u ∈ H2(Ω, T ) and ∇u is continuous across each edge
e ∈ Eint, one can deduce the Galerkin orthogonality property

BDG(u − uDG, wN ) = 0 for all wN ∈ Sp(Ω, T ,F).

For all v ∈ H2(Ω, T ) define the norm ‖ · ‖DG by ‖v||2DG = BDG(v, v).
Setting (v, w)e =

∫

e |a.µκ|vw ds for each e ⊂ ∂κ and ‖v‖2
e = (v, v)e, after

some manipulation we get

‖v‖2
DG =

∑

κ∈T

(

ε‖∇v‖2
0,κ + ‖c0v‖2

0,κ

)

+

∫

∂Ω
σv2 ds +

∫

Γint

σ[v]2 ds

+ 1
2

∑

κ∈T

(

‖v+‖2
∂−κ∩∂Ω + ‖v+ − v−‖2

∂−κ\∂Ω + ‖v+‖2
∂+κ∩∂Ω

)

,

where ‖ · ‖0,κ is the L2(κ) norm and we set

c0(x, y) =
√

b(x, y) − div a(x, y)/2;
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by (10.1) the function c0 is well defined. Clearly ‖ · ‖DG is stronger than
‖ · ‖1,ε.

Now Houston et al. (2002) write u − uDG = (u − Πu) + (Πu − uDG)
where Π is the orthogonal projector in L2 into Sp(Ω, T ,F). From Galerkin
orthogonality we have

‖Πu − uDG‖2
DG = BDG(Πu − uDG, Πu − uDG) = BDG(Πu − u, Πu − uDG),

(10.16)
and, under the assumption that a.∇wN |κ lies in Sp(Ω, T ,F) for all wN ∈
Sp(Ω, T ,F), some analysis of the right-hand side of (10.16) enables ‖Πu −
uDG‖DG to be estimated in terms of various norms of u − Πu. Invoking
the triangle inequality ‖u− uDG‖DG ≤ ‖u−Πu‖DG + ‖Πu− uDG‖DG then
leads to a bound on ‖u − uDG‖DG. In the particular case where the mesh
elements are rectangles, piecewise polynomials of degree p are used, h is the
mesh diameter and the solution u lies in Hp+1(Ω), the bound becomes

‖u − uDG‖DG ≤ C(ε1/2hp + hp+1/2)‖u‖Hp+1(Ω), where C = C(p).

Note that the right-hand side here depends on a Sobolev norm of u that is
typically O

(

ε−p−1/2
)

. It may be possible to use cut-off functions to localize
this result away from layers, removing this undesirable feature.

The above analysis from Houston et al. (2002) assumes that the mesh is
nondegenerate (Brenner and Scott 2002, §4.4), which excludes the long thin
elements one expects in any mesh that is specifically designed to improve
the behaviour of the method inside layers. Roos and Zarin (2003) apply this
DGFEM to a problem on the unit square that has exponential layers along
x = 1 and y = 1 and no other layers. Working with piecewise bilinears on a
rectangular Shishkin mesh like that of Figure 9.2 with N mesh intervals in
each coordinate direction, they adapt the analysis of Houston et al. (2002)
to this situation (which entails a different choice for σe on part of the mesh)
and prove that

‖u − uDG‖DG ≤ CN−1 ln3/2 N. (10.17)

A related paper (Zarin and Roos 2005) considers a problem similar to Ex-
ample 6.1 and, using a Shishkin mesh similar to the one in Figure 9.3 with
N mesh intervals in each coordinate direction, again obtains the bound
(10.17).

We remind the reader that there is no universal agreement on a ‘best’
form of the DGFEM. For example, Gopalakrishnan and Kanschat (2003)
consider a symmetric version of our bilinear form BDG(v, w) that is obtained
by changing the signs of the terms ε

∫

∂Ω v(∇w.µ) ds and ε
∫

Γint
[v]〈∇w.ν〉ds.

A good sense of the breadth of interest in the DGFEM and the variety of its
manifestations can be inferred from the collection of papers in Cockburn,
Karniadakis and Shu (2000).
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10.5. Adaptive methods

Adaptive FEMs compute a solution to a boundary-value problem on some
conventional (e.g., equidistant) mesh using some stable method such as
SDFEM, then use this solution to compute a posteriori some local error
estimator that gives guidance on where one should refine or coarsen the
mesh to obtain a mesh better suited to the boundary-value problem. On
this new mesh one then computes a fresh solution to the problem, then the
mesh is again modified based on the local error estimator. The process is
continued iteratively until some stopping criterion is reached. See Ainsworth
and Oden (2000) or Brenner and Scott (2002, Chapter 9) for a more precise
description.

There is perhaps a general consensus that in the long run adaptive meth-
ods will provide the most satisfactory approach to solving convection-diff-
usion problems, but today their behaviour when applied to such problems
is still poorly understood, despite many published numerical experiments.
John (2000) gives numerical examples of how apparently reasonable error
estimators can yield inaccurate solutions to convection-diffusion problems.

A difficulty with the theory of a posteriori error estimators for convection-
diffusion problems is that published inequalities relating the estimator to the
true error frequently contain multiplicative factors that depend badly on the
small diffusion parameter ε. This seriously undermines the validity of the
estimator. Below we shall confine our discussion to a few ε-independent
results that have been obtained.

For the one-dimensional problem (3.12), an adaptive-mesh algorithm that
is based on arc-length equidistribution (where mesh points are moved but no
points are created or deleted) is analysed by Kopteva and Stynes (2001), us-
ing earlier a posteriori bounds from Kopteva (2001). It is shown that, start-
ing from an equidistant mesh with N subintervals, after O(ln(1/ε)/(ln N))
iterations one obtains a computed solution uN that resolves the layer with
moreover |u(xi)− uN

i | ≤ CN−1 for all i. The underlying numerical method
is simple upwinding so this is a finite difference approach, but we include
it here since it is a clear convergence result for an adaptive method and
few such results exist for convection-diffusion problems. It seems difficult
to extend this type of result to two-dimensional problems.

In Sangalli (2001) the residual-free bubble FEM is considered; this method
is related to the SDFEM (Brezzi, Marini and Süli 2000). An error estim-
ator based on element residuals and jumps in the normal derivative of the
solution across edges is shown to be robust for (6.1), i.e., the global value
of the estimator is equivalent to the true error up to a constant factor that
is independent of ε, but the norm in which the true error is measured is

w �→ ε|w|H1(Ω) + ‖a.∇w‖H−1(Ω),
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which is weak: the factor multiplying | · |H1(Ω) is ε, not the more natural

ε1/2 that appears in the weighted energy norm ‖ · ‖1,ε of Section 7.
The dual-weighted-residual method for goal-oriented error estimation has

been successfully applied to convection-diffusion problems by various au-
thors; see Eriksson, Estep, Hansbo and Johnson (1996) and Bangerth and
Rannacher (2003). Here the aim is to adapt the mesh in order to com-
pute accurately some functional of the solution but not the solution itself.
The theoretical basis for this method has recently been surveyed in Acta

Numerica (Giles and Süli 2002) so we shall not discuss it further here.
Finally, Verfürth (2004) shows that for the SDFEM the error in the com-

puted solution is equivalent (up to a constant factor that is independent
of ε) to the global value of each of three different estimators (one based
on element and edge residuals; one based on the solution of local Dirichlet
problems; one based on the solution of local Neumann problems). The true
error is measured in a norm

w �→ ‖w‖1,ε + ‖w‖∗,
where ‖ · ‖∗ is the dual norm on H−1(Ω) defined by

‖w‖∗ = sup
v∈H1

0
(Ω)\{0}

(w, v)

‖v‖1,ε
,

with (·, ·) the corresponding duality pairing. (This special norm is used
to bound the convective term.) But the paper assumes that the mesh is
quasi-uniform, which excludes the long thin elements that one expects an
adaptive code to construct when solving a convection-diffusion problem.

In summary, we do not have today a satisfactory adaptive method for two-
dimensional convection-diffusion problems that, starting from an ordinary
coarse mesh, is guaranteed to produce a layer-adapted mesh with a bound
on the error in the computed solution in some reasonably strong norm.

11. Concluding remarks

Our survey has not been exhaustive. For example, the hp finite element
method appeared only in an incidental way in the title of Houston et al.

(2002) in Section 10.4. For general surveys of methods for convection-
diffusion problems see Morton (1996) and Roos, Stynes and Tobiska (2005).
(For the hp finite element method see Schwab (1998), and also Melenk
(2002), where singularly perturbed linear reaction-diffusion problems are
examined in great detail.)

Time-dependent convection-diffusion problems are of great practical im-
portance but space constraints did not allow their discussion here. As
well as the general references cited above, see Ewing and Wang (2001) and
Hundsdorfer and Verwer (2003).
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The numerical analysis and solution of convection-diffusion problems on
polygonal regions, where the solution is assumed to exhibit boundary but
not interior layers and one has sufficient compatibility of the data at the
corners of the domain, is by now fairly well understood in the framework of
Shishkin meshes combined with finite difference or finite element methods.
When we consider interior layers (and the effects of data incompatibilities
at corners) our grasp is much less sure and there are several competing
methods. In the long run the view of this author is that adaptive methods
will triumph over all types of convection-diffusion problem, but much work
remains to be done.
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